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PREFACE TC THE EIGHTH EDITION

Crawems that have been made in recent editions include
a zet of Miscellaneous Examples at the end of the hook
and an independent proof of Licuville’s theorem has beef )
given. In this edition, the proof of the Ezamples~on °
page 50 has been altered. A

Limitations of space made it nceessary for me t6, confine
myself to the more essential aspects of the theory and its
applications, but I have aimed at includinghbse parts of
the subject which are most useful to Hadgurs students.
Many readers may desire to extend th’ei}\howledge of the
subject beyond the limits of the,.present book. Such
readers are recommended to study’the’standard treatises of
Copson, Functions of a@ Complex Variable {Oxford, 1935),
and Titchmarsh, Theory of Functions (Oxford, 1939). I
take this opporturu'“t,&;,wggﬁlégq}q_[:bq}g},%ﬂﬂ' « my constant
indebtedness to thesesworks both i material and
presentation.

I have presupyr}sed a knowledge of Real Variable
Theory correspehding spproximately to the content of
my Course of Analysis (Cambridge, Second Kdition,
1930). References are occasionally given to this hook in
footnoted as P A.

1 3ish to express my thanks to all those friends who
ha?{made helpful suggestions. In particular, I mention
two of my colleagues, Mr A, C. Stevenson, of University

,{fc'ollege, London, who read the proofs of the first cdition,

\ and Prof. H. Davenport, F.R.8., who very kindly suggested

a nuniber of improvements for the second edition. I desire
also to express my gratitude to the publishers for the careful
and efficient way in which they have carried out their

dutics, E. @ P.
Baxgor, Oclober 1056
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CEAPTER X

FUNCTIONS OF A COMPLEX VARIABLE O

§ 1;\;‘é9mp!ex Numbers "

This book s concerned essentially with the application
of the methods of the differential and Ln{c.gral calculus
to complex numbers, A number of thofofm ¢ +iff, where
iis 4/(--1) and @ and 8 are real mﬁnbora, ig called a
complex number; and, although{somplex numbers are
capable of a geometrical interprb;ttfbion, it is important
to give a definition of them which depends only on real
numbers.  Complex numbers first became necessary in the
studv of algebraic equatich¥.” PR ERAIHIETS Be able to
say that every quadrétic equation has two roots, every
cubic equation has three roots, and so on.  If real numbers
only are conaidcﬁx}\, the equation z*-+1 = 0 has no roots
and a®—] = @ Shas only one. Every generalisation of
number firgty pfesented itself as needed for some simple
problem sbut cxtensions of number are not created by
the mereneed of them ; they are created by the definition,
and«}u’ object is now to define complex numbers,

By choosing one of several possible lines of procedurs,

ay

:‘Qe'dcﬁne a complex number as an ordered pair of red
Nfwmbers. Thus (4, 3), (2, €), (}, 7) are complex numbers.

If we write z = (2, ¥), ® is called the real part, and ¥
the imaginary part, of the complex number z.

(i) Two complex pumbers are equal if, and only if,
their real and imaginary parts are separately equal. The
equation z = 2’ implies that both z = o andy =y

i A



2 FUNCTIONS OF A COMPLEX VARIABLE

(i) The modulus of z, written |z |, is defined to be
4/t Lyt It follows immediately from the definition
that |z | = O if, and only if, x = 0 and y = 0.

(iil} The fundamental operations.

If 2 = (x, y), &’ = (2, ") we have tho following definitions |

(1) z+2"1s (z+2', y+y')-
(2) —zis (—x, —yl.

(8) e—2" = z—i—(—z’) is {z—a', y—¥'). U
(4) zz'is (22’ —yy', vy’ +2'y). . !

N ¢
o\

\

if the fundamental operations arc thus defi ed wo easily
see that the fundamental laws of algebrg Ars all satisfied.
(a) The commautative und associative laws of addition hold :
. D
itz = 2ot L0
21 H{2at2s) = (2 H3h% = 2 1Fzetzs.
(b) The sume laws of mulupht:a.{zon hold :
Z,7p = z?r »
wwwr By R og R 71727
(c) The distribuljve T holds :
}zl—l—zgzs = Z,%3+ %%
Asg an examﬂé of the method, we show that the com-
mutative {aw of multiplication holds. The others are
provul am]‘l]arly
4 zz\A(zlx.z M1l T1Ya 2l
== (B8, — Yo, Tolf1 T2 Y} — Zp%q.
o \ We have thus scen that complex numbers, as deﬁncd
NN *above, obey the fundamental laws of the algebra of real
”\‘ / numbers: hence their algebra will be identical in ferm,
though not in meaning, with the algebra of real numbers,
We observe that there is no order among complex
numbers. As applied $o complex numbers, the phrases
“ greater than’ or “less than ” have no meaning. In-

equalitics ean only oceur in relations between the moduli
of complex numbers.



FUNCTIONS OF A COMPLEX VARIABLE o3

{iv} The definition of division.
Consider the eguation 2{ =12', where z= (2, #),
{= (& q), " = (2, ¥}, then we have

(@& —im, on+yé) = @', ¥),

so that 2f—ym =2, m+uyf =9,
and, on solving for £ and 4,
gyt Wy C
w2y x2g? PAY

provided that |z] 3 0. Hence, if |2z] 5 0, theréis a
unique selution, and £ = (£, 5} is the guotient 22
Division by a complex number whose modulus is zero
is meaningless; this conforms with thealgébra of real
numbers, in which divigion by zero is m,eﬁ@ﬁngless.

The abbrevialed nolation. o\ by

It 18 customary to denote a\complex number whose
imaginary part is zero by“ﬁﬂgf‘ TR }Rﬁ%ﬁys%‘%ﬁ& z. If
we adopt this practice, it is essential to realise that « may
have two meanings (i)(the¢ real number =z, and (ii} the
complex number (x, 0% ) Although in theory it is important
to distingmish betw&;}i (i) and (ii), in practice it s legitimate
to confuse them( Yand if we use the abbreviated notation,
in which = sﬁ-andg for (x, 03 and y for {y, 0}, then

4y = %:&)"—}—(y, 0) = {x_l_y, 0)’
7y =0 (5, 0) = (.y—=0.0,2.0+0.5) — (5, 0).
N

Heges, so far as sums and products are concerned, complex
mimbers whose imaginary parts are zero can he treated
mifvs.though they were real numbers. It is customary to
"Vdenote the ecomplex number (0, 1) by ¢ With this
convention, 4% = (0, 1).(0, 1} = (—1, 0}, so that { may
be regarded as the square root of the real number —1.
On using the abbreviated notation, it follows that

{zl y} = x+‘£y5



4 FUNCTIONS OF A COMPLEX VARIABLE

for, since ¢ = {0, 1), we have
5‘5-!—"?7‘ = (.1:, 0) '1”(0’ 1] . (y) 0)
— (%,0)+(0.5—1.0,0.0+1.7)
= (, 0)+{0, y} = (x+0, 0+y) = (&, Y-

In virtue of this relation we sce that, in any operation

involving sums and products, it is allowable to trept, .

x, y and ¢ as though they were ordinary real nuruueiﬁ“
with the proviso that i* must always be replaced by, %,

a
<

§ 2. Conjugate Complex Numbers :
2\

If 2 = x4y, it is custornary to write xRz, v — Iz
The number z—iy is said to be conjugate to z ax.d ia
usually denoted by 7. It readily follow&that the numnbors
conjugate to z; +2, and 2,2, are 7, +Zpand 2,7, respectively.

Proofs of theorems on compleX numbers arc often
conmderably simplified by theluse of conjugate complex

numbers, in mﬁl}l}e ofl tl':.he rel&ﬁmna easily proved,
[2]* S i&g Orég—ﬁn 21z = z—32.

To prove that the gﬁdulus of the product of two complex
numbers ts the produgt of their moduli, we proceed as follows:

XN o - .
Z1%a l ==NEyRgl %y == TRy . By = [ z, 2. | zp |?

and so, au:lcgrthe modulus of & eomplex number is never

negatlve,
¢ PARSEANENS

N/

corem. The modulus of the sum of two complex

\f}humbers cannot exceed the swm of their moduli.

| 23+25 |2 = (21 +22}(2;+2,)
= 2% 42,2, 2125 H 2,8,
= | 21 P+2R(2,75) +| 2 |2
<1n 42 |2y | + 2
= {2, |+] za )%,
and so lzv+23] <<izs |+ 22 |5

N\



FUNCTIONS OF A COMPLEX VARIAELE 5

a resilt which can be readily extended by induction to
any finite number of complex numbers,

In a similar way we can prove another useful result,
viz.

21—z | 2 | (|2 || 2z D} £\
Wo have
|z3—2, |* = |2, [*—2B(z,2,) +| 2, [° '\:\.
= |2y F—2] 2,75 |+ 24]° O
= (2 |~z s
hence [2i—25 ] 2 (| 22 | [ 22 D] ’ :

§ 3. Geometrical Representation SR Complex
Numbers A

(N
If we denote (x2-4yHt by r, and{choose & so that
reosf =, reinf =y, then r and f\age clearly the radiug

Loy ) Py

LOR St R ""\

Fi1a. 1.

N \
vector aﬁa vectorla] angle of the point P, (x, ), referred
to QI"lgll_I O and rectangular axes Ox, Oy. It is clear
thaf ariy complex number can bo represented geometrically

_by*the point P, whose Cartesian coordinates are (x, )
{.or whose polar coordinates arc (r, #}, and the representation
of complex numbers thus afforded is called the Argand
diagram.

By the definition already given, it is evident that r
is the modulug of z= {x, y}; the angle & is called the
argument of z, written § = argz. The argument is not
unique, for if & be a value of the argument, so also is
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240, {n=0,1+1,32,...). The principal value of argz
is that which satisfies the incqualities —w<Carg 2w,

Let P, and P, (in fig. 1} be the points z, and 2,, then
we can represent addition in the following way. Through
P,, draw P,P, equal to, and parallel to OF, Yhin Py
has coordinates (x,-+%,, ¥+, and so P reproscnts the S
point 2, +z,. A\ o

. . K®
In vectorial notation, ~ N

0P, = OP, + PPy — O, +0P, = OP, + P, T\
Similarly, we have, if P, is the point z,, \: '
tszy = OF,—OF, — 0Py 4P, S0P, = 7,

It iz convenient to write cisd f{il\\“ cosf +1einf. If
2y =71 cishy, zg==racisly, .., Zm= 7, cisf,, then, by
de Moivre’s theorem, Y

Z12g.. By = rlrz...r&eis(ﬂ'l 0,448,

which rea-dim,epﬂgﬂaiﬁ&)&jfs_}ﬁaﬁgnthat the modulus and
argument of a produet‘are equal respoctively to the
product of the modihi and the sum of the arguments of
the factors. In particular, if n be a positive integer and
2z =rcisf, 2" Sﬁ\r”"cis né.

Bimilarlyy
O™ .
P\ -—1=f-1—rfis(91—02}.
N Ty Ty
. @)is a positive integer, there are n distinct values of
&M% If m is any integer, since

(cis 0 +2mﬂ)" == cia @,

"

it follows that /= cis{(6+2mr)/n} is an nth root of 2=rcisd.
If we substituto the numbers 0, 1, 2, ... n—1 in succession
for m, we obtain n distinct values of 21/#; and the sub-
stitution of other integers for m mercly gives risc to
repetitions of these values. Also, there can be no other
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values, since #1/® is a root of the equation u® = 2z which
eannot have more than n roots.
Similarly, if p and g are integers prime to each other
and g is positive,
2P0 = ¢Pid oinl(pf +-2mm)/q),

wherem =0, 1, 2, ..., g—1.

By considering ths modulus and argument of a complex\' \“~\
number, the operation of multiplying any complex numbos
@44y by 1 is easily seen to be equivalent to turning the' “irle
OF through a right-angls in the positive {counter- clockwuse)

sense. We have just scen that m\

arg (z,5y) == &rg z;-Harg z,, arg (z—l] = arg\ WSBIE 2g,
e N\
so that the formal process of * takmg a.rguments is gimilar
to that of ‘‘ taking logarithms.” Hence, if arg {x-+iy) = a,

arg i{z+1ty) = arg 1+arg,(§s~—11;) = dn+ta.

Sinee |4 | = 1, multiplying by avlea.ves | 241y | unaltored.
WA tlbl aulibrary.org.in

N

§“( Sets of Points in/the Argand Diagram

We now explai;n{'s&ne of the terminology neccssary
for dealing with sets of eomplex numbers in the Argand
diagram, We ghall use such terms as domain, confour,
inside and owzszde of a closed contour, without more precise
definition tham geometrical intuition rt'qmres The general
study of & ch questions a8 the precisc deterniination of
the jaeide and oulside of a closed contour is not so easy
ag Our intuitions might lead us to cxzpect.* For our
,pg'eisént purpose, however, we ghall find that no difficulties

"Narise from our relying upon geometrical intuition,
N By a meighbourhood of a point z, in the Argand
diagram, we mean the set of all points z such that jz—z,| <,
where ¢ is a given positive number. A point z, is said

* For furlher information, see e.g. Dienes, The Taylor Series
{Oxford, 1931}, Ch. VI,
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to be a limit point of a set of points 8, if every neighbour-
hood of z, contains a point of § other than z, The
definition implies that every neighbourheod of a limit
point z, contains an infinite number of points of 8. For,
the neighbourhood |z—z, [<e contains a point z, of 8
distinet from z, the meighbourhood |z-z, || z3—% |
contains a point z, of § distinet from z, ant so om
indefinitely. R\,

The limit points of a sct are not necessarily pqilid;s} of
the set. If, however, every limit point of the sefBelongs
to the seb, we say that the set is closed. Thérpare two
types of limit points, interior poinis and bgdary points.
A limit point 2z, of S is an interior point if there cxists
a neighbourhood of z, which consistgybuttirely of points
of 8. A limit point which is not . dn“interior point is a

boundary point. PNY;
A sot which consists entirely Jof interior points is said
to be an open set. &N

www . dbraulibr 1{\,}?01‘3.111 .
It should bo ohservedthat a set nred not be either open
or closed. An exampleof such a sl iz that eonsisting of the
point z = 1 and all thovpoints for which 2| <1.

We now de‘f@e"& Jordan curve.
s The equation z = x(t)-+-iy(t), where z{f) and y{t} are
/real eonpi@’uﬁus functions of the real variable ¢, defined
in the Tange a <<E<f, determines a set of points in the
Arga{'%d diangram which is called a continuous arc. A
int’ z; is a multiple point of the are, if the equation
2y = x(t) +iy(t) is satisfied by more than one value of ¢ in

™3 tho given range.

A continuous arc without multiple points is called a
Jordan arc. If tho points corresponding to the values
a and B coincide, the arc, which has only one multiple
point, a double point corresponding to the terminal values
o and B of ¢, ia called a simple closed Jordan curve.

A set of pointz Is said to be bounded if there exista
a constant K such that |z |{K is satisficd for all points



v

\‘;

-

FUNCTIONS OF A COMPLEX VARIABLE 9

z of the sct.- If no such number K exists the set is
unbounded.

A domain is defined as follows:—

A sct of points in the Argand diagram is said to be
connex if cvery pair of its points can be joined by a
polvgonal are which consists only of points of the seb.
An open domain is an open connex set of points. The
sct, obtained by adding to an open domain its boundary
puints, is called a closed domain.

The Jordan curve theorem states that a simple g:éa&ed
Jordan curve divides the plane inlo two cpen domm;w swhich
have the curve as common boundary. Of thcs&\slomama
one is bounded and it is called the interidaythe other,
which is unbounded, is called the extq;t{or Although
the result stated sccms quite obvious, 4" proof is very
complicated and dilieult. When ydging simple closed
Jordan curves consisting of a few straight lines and circular
arcs, geometrical intuition makedds' obvious which is the

interfor and which is the exterion domain,
w gk dbra uhbrary org.i
For example, the circlals | = divides Sthe Argand

diagram into two separbied open dumﬂm:, |z|<R and
lz]>R. Of these thg. fqrmz,r is 8 bounded domain and is
the interior of thoeieele iz | =R, the la,tter which is
unbounded, is the &erlor of the cirele |z | =

In complcx Yariable theory wo complete the ('omplex
plano by dddmg a single point at infinity. This poiut is
defined 0'}_?0 the point corresponding to the origin by the
transfs(mdtlon 2 = 1}z

- O
'§\\‘§.’3Punctions of a Complex Variable. 'vcgntinuity

If w{= u-iv) and z{= z+iy) arc any fwo complex
numbers, we might say that w is a function of 2, w == f(z), if,
to every valuo of z in a cerfain domain D, there correspond
one or more values of w. This definition, similar to that
given for real variables, is quite legitimate, but it is futile
because it is too wide. On this definition, a function of

N

\



10 FUNCTIONS OF A COMPLEX VARIABLE

the complex variable z is exactly the same thing as a
eomplex function

u{x, i)‘) —i—iv{x, y)
of two real variablas z and y.

For functions defined in this way, the definition of
continuity is exactly the same as that for funitions of g
real variable. The function f(z) is continuous at Phgl
point z, if, given any ¢, =0, we can find a number § sucl{that’

| flz) —flzp)| <€ N

for all points z of I} satisfying | z—z, ] <8, 'T‘.er’ﬁ'nmbcrﬁ
depends on e and also, in general, upou¥gy. If it is
possible to find a number A{e) tndependept of =z, such that
| f(2)—F(z) | < holds for every pair of)ptints z, %, nf the
domain D for which |z—z,|<<h, ‘ghén“f(z) iz said to be
uniformiy continuous in I3, TtN¢an be proved that a
function which is continuous in‘a. bounded elosed domain
is uniformly continuous therd™®

Tt is eawyvtoddhewl ithafiiergdefinition of continuity is
equivalent to the sta;j:eineht that a continuous funciion
of z is merely a confinnous complex function of the two
variables @ and y, $or, if

NIG) = e, y) v, ),

when f(z) 48 “eontinuous on the ahove definition, so are
w{x, ) a-m}zu {x, %) ; and conversely, if « and »are continuous

funcpigir?s of x and g, f{z) is a continuous funection of z.
~Ehe only class of functions of z which is of any practical
‘ut'hity is the class of functions to which the process of

~udifferentiation can be applied.
O
\ ) 6. Differentiability

?We . next constder whether the definition of the
derivative of a function of a single real variable is applicable

* For a proof of this theorem for & closed intorval, see Phillips,

A Course of Analyais (Cambridge, 1939), p. 78. This will bo referred
to subsequently as P.A,
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to functions of a complex variablo. The natural definition
is as follows: Let f(z) be a one-valued function, defined in
g domain D of the Argand diagram, then f(z) is differentiuble
al a point 2y of D if

flz=fi=

z—24
tends 1o @ unique Limil as z—> 2,, provided that z is also a
poind of D

N
If the above limit exists it is called the derwatnns

of f{z) at z =z, and is denoted by f'(z,). Restating" vhe
definition in & mere clementary form, it asserts that{given
e>0, we can find a number & such that N
] —f{= |
‘f zfu—° —flz)i<e N
for all 2, 2, in D satislfying 0<C |z - zm<S\ That continuity
does not imply dllferentlabﬂlty is sdon from the following
simple cxample :— o
Let fiz) = |z |>. This contmuaus function is differentiable
at the origin, but nowhere \éW Fﬁ?tﬂlbﬁ FEVIORE lmve
[z [*—] Ep [2 p: zz—zuza — iz, 2%,
z—2p LN 7% z—2y
AJ=1% +zg{cos 2p—i sin 24)
where ¢ = arg (2 Eﬁ,)\ It iz clear that this expression does
not tend to & umquv limit as 2-> 24
If 2 = O b incrementary Tutio is Z, which tends to zero
s 2 . \ »
§7. g“’u‘}ar Functions
fiction of z which is one-valued and differentiable
at«evcry point of & domain D is said to be rsgular in the
ch:n‘n'un D. A function may be differentiable in a domain
gave possibly for a finite number of points. These points
are called singularities of f(z). We next discuss the
necessary and sufficient conditions for a function to be
regular, '
* The terms analylic and Aolomorphic are somotimes used aa
synonymous with the term regular as delined above.

N

AN
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(1) The necessary conditions for f{z) to be regulur,

If fiz) = w{x, y}+iv(z, ¥) s differentiable at a given
point z, the ratio {f{z+42) —f{2)}/dz must tend to a definite
limit a8 dz—0 in any menner. Now dz = Axd-idy,
Take 4z to be wholly real, so that dy = 0, then

ur 4w, y) —ule, y) |, o elxtde, y) vl )

N
. i AL AT o

Az dx P

must tend to a definite limit as Jx— 0, [t fn,lii;‘wé that
the partial derivatives ws, v, must exist agpbhe point
(x, ¥) and the limit is wuptiv,. Similaglfi\ 1T we take
4z to be wholly imaginary, so that dw <59/ we find that

vy —iuy. Bince the two limits obtai{’u} must be identical,
on equating real and imaginary pards, we get

Uz = Uy, Uy 2 Vg, . . A

These two_rpelatipns arc scalled the Cauchy-Riemann
diﬁerentiaﬁéﬁi&?ﬁ%@g }.tiﬁ"y orgdn g

We have thus proved that for the function fiz) o be
differentiable at the foint z it is necessary that the four partial
derivatives wu,, pg\uy, v, should exist and satisfy the Cuuchy-
Riemann d{ﬁ'e%s}tia.i equations,

We thussée that the results of assuming differentiability
are mope dfar-reaching than those of assuming continuity.
Not only must the functions w and v possess partial

erivatives of the first order, but these must be connected

the differential equations (1),

That the above conditions are necessary, but not

)" sufficient, may bo seen by considering Examples 6 and 7

at the end of this chapter.

(2) Sufficient conditions for f(z) to be regular.
Theorem. The continuous one-valued function flz) i3
regular in a domain D if the four partinl derivatives u,, v,

ty, ¥y exist, are conkinuous and satisfy the Cauchy-Riemann
equations at each point of D,
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Now

Au = w{z+ Az, y+Ay) —uiz, ¥),
= 'H-{Z i"dﬂf, y-i"-ﬁ.?}) —u(x—f—dx, ?}') —I—u(x—{—ﬂx, y) ——u{x, y),
= Ay . u,(z+dz, y -84y +Aw . wa{x+8 2, y)

where 0<f<1, 0<{<1, by the mecan-valuc theorem.* O\

Since 4z, 4, are hoth continuous, we may write SO\
Ay = Azfuslz, )+ +dylule pi+et O
where ¢ and € both tend to zero as |4z [— 0. N
Similarly, 2

R
dv = Ax{ee(z, yr4ay+Ay(o, 2 yIFRD
where 5 and %' both tend to zero as | Az.l,f\x}).
Henco dw = Au—+idy A
= Aw(ug |ivg) +dylu, —i—:‘iv;}"i—wdx—i—w'dy,
whore w and «” tend to zero gxs[’«:.’}z [—> 0.
On using tho Cauchy-Riemann equations we get

U wwewdbrradlibrary. i
Adw — (An| iy +1va) +w %‘_jﬁ[g!’ﬁ;ﬂ

and, on dividing by,,&\a,nd tuking the limit as |dz{— 0,

7\

s./d )
\\ 'iv = Uy g,
Z“s dz
. ’\) whArtw'ds
since NS ‘—Z;—J < || + [,

i"\".
W '§otica that the above sufficient conditions for the
_Jegularity of f(z) require the confinuily of the four first
*M\,p:anrtial derivatives of w and o,
Q If w = % }1v, where u and v are functions of x and y,
Bince
1

p— 1 - — ~
x = § (z'iz) 2 Y= Z (z_z):

* See P.A, p. 101,
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u and ¥ may be regarded formally as fanctions of two
independent variables z and 2. If w and » have continuous
firat-order partial derivatives with respeet to @ aml », the
condition that w shall be independent of £ is that ¢w, 02 = 0.
This lcads to the resnlt

du dx  Du &y i dv 8x | dv oy\
x oz | oy oz dr 82 ' dy 42 "L O\
that is ‘ O
léw  louw  idv 1o N
e T L
2 oz 2e 0y 28x 28y \\
and, on writing ¢ for —1/¢ and cquating seaband imaginary
parts, we get )
ou v Oy _ A‘@‘ . ] . (D)

62:_8_; éx  2\&y’

which are the Cauchy-Riemann eqtmtions
Hence, in any analytical formule which represents 3
regular fun\“"ﬁi’dﬁ ff‘!é%&?a"aﬁ% Beur only in the combinas

tion z-tiy. For example it is clear at a glanoe that
sﬁx(x—f—SiJ) = gin {2z—Z)

cannot be a rég}lar function.

If u+tigs flztdy) where fi(z) is a regular function,
then the (réal functions » and v of the two real variables
2 and.guare called conjugate functions.

Aifde the partial derivatives of w and » are connected

lQ\bhc relations
A\ w8y o _Bu 1
fx _ ay E) (TI} (j . - ( )

.“\ o

. Y

if the derivatives econcerned aro assumed to exist and
satisfly the relation t;bzy—.g!)ﬂ, it follows by partial
differentiation that

Fv Pu &y £ o2 &y

axay_'éc@_'*é?an é}a_g;:_-@_:r_z ey

&'\
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Henece both u and » satisfy Laplace’s equation in two
dimensions
3¢ &

Tqé_ldxz 8J

This equation cceurs frequently in mathematical physics.
It is satisfied by the potential at a point not ocecupied by A .
matter In a two-dimensional gravitational field. It is, )
also satisficd by the velocity potential and stream function,) ))
of two-dirensional irrotutional flow of an 1ncomprca§1ble
non-viscous {luid.

By sepdmtmg any regular function of z 111136\\1:3 real
and imaginary parts, we obtain immediately twte eolutions
of Laplace’s equation. It follows that bhe; theory of
functions of a complex variable has nnpoﬁ'u\t applications
to the solution of two-dimensional pfoblems in mathe.
matical physics. It also follows f'rom cquatlom {1) that

. gy & (%

* &z m}?’}hganm}%afy orglin  * (

| ,gs

2)

The geomectrical iTltL’Fprt*ttLLlOn of {2} ia that the families
of curves in the (xz, g)‘}flanc corresponding to constand
values of w and i intersect at right angles at all their
points of intersestion. For if w(x, ) = ¢, then du =0,
and so O
N b s

Vo \ud —de+ —dy=0. . . R

\: ox £y J )
Slmﬂu\y if vz, ¥) = ¢y, we have
NS B '

) ;— e + - d?; =0 . . . 4

\‘; éx

The condition that these familics of curves infersect at

right angles is
ay (T -
(dm)l (ufx) Ml=0. . . ©



16 FUNCTIONS OF A COMPLEX VARIABLE

where the suffixes 1 and 2 refer to the w and o families
respectively. On using (3) and (4), it is easy Lo see that
(5) reduces to (2),

It is possible to comstruct a funection f(z) which has a
given real function of = and y for ils real or imaginary
part, if either of the given functions ufx, y} or »{x, y} is
a simple combination of clementary functions satisfvint «
Laplace’s equation. A very clegant method of doing. thl‘-}
is due to Milne-Thomson,* O

Since x = 1 (Z‘f’é}, ¥ l {”—Z-}, ,.i:“
2 ,

o) = u {z—l—z z—z]J 4o

We can look upon this as a form,'tl ,i\lc-ntity in twe inde-
pendent variables 2, 2. On puttmw Z == 2 wo geb

WL db{': L)Jllbr%;‘_g'z;ngl}‘;_fg (z 0)-
Now f'(z) = uy—tivy — #h—iu, by the Cauchy-Riemann
equations. Hence, {f\we write ¢, (x, ¥} and oz, ) for
gy and u,, respectively, we have

= Bl V)il ¥) = afes O) =il O
On intcgra;ﬁﬁig, we have

O 10 = [ 0-idyte, gz,
™\

\Q’;érhcre O is an arbitrary constant,.
A\ Similarly, if o(x, y) is given, we can prove that

\ ) 4
= J.{‘/‘:L(?-, 0)-Hiru(z, 00}d=+0,

where ¢1,(z, ¥) = v, and ,(x, Yy) = va.

* Maih. Gazette, xxi. (1937), p. 228, See ulso Misc. Ex. 1, p. 138.
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As an example, suppoze that w(wy) = e¥(x cos y—y sin #.
ou .
Here ¢, = Pt &% ¢03 ¥ —y sin y+-cos y),
fu e*{ —x sin y-—sin 1 03 4}
= = —% 510 y— — oS4
¢a 5y ¥ Yy—y cosy
ence f'(z) = (2, O)—idalz, 0) = e7 (241),

and so flz) = Jc’ (z+1ida4+-C = ze* 4+,

N
o

~ <
“%§ 8. Power Series, The Elementary Functiouos':g
&/

Cousider the series fanz" or & @, {z—2,)% wwhere the
n=0 n=0

cocfficicnts a,, and z, 2, may bo complex. Siheé the latter
geries may be obtained from the former byla‘simple change
of origin, the former may be regardedbg’a typical power
series. It is assumed that the readedds already familiar
with the theory of real power seripgl®

So far as absolute mnverw@g&gmﬂfﬁp&egoggqqﬁhing
that has been proved for abielutely convergent series of
real terms extends at oncetp complex series, for the scries

of moduli AN
Lol +kabfz] +lan| 2 +..

is & series of posifive terms. The most uscful CONYVCTZeneo
test for power (garies is Cauchy’s root test, which statcs
that a ser:iaé“of positive terms Zw, is convergent or
divergentagcording as lim (u,)/" is less than or greater
th;m‘m%t_?:f‘ If we write lim |a, 1% = 1/R, then we
- casilydsee that the power series Zie,27 is absolutely con-
| yéigent if |z |<R, divergent if z|>R, and if |z|=R
e can give no general verdict and the behaviour of the
series may be of the most diverse nature. The number R
iz callad the radius of convergence, and the circle,
centre the origin, and radins R, is called the circle of

* See PLA., Ch. XTII,
t See PLA, p. 124,
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convergence of the power series, Clearly there are three
cases to consider (i) B =0, (i) K finite, (ili) &t infinite,
The first case is trivial, since the series is then convergent
only when z = 0. In the third case the series eonverges
for all values of z. In the second oase the radiuz of the ~
circle of convergence is finite and the power series {80
absolutely convergent at all points within this (311‘;31&l
and divergent at all points outside it. N

We now prove an important theorem. \

,‘

N
Af flz) L 2", then the sum-function ﬂz) ili at ‘regular

Junction af ebe?‘J point within the circle of .’onr__ry nee of
the power series.

Suppose that 22" is convewont’%‘f |z «<fi. Then,
if 0<<p<<R, a,p™ is bounded, say JL?;( T< K. Lt

N

We wmté"“f‘drd}éb?ﬂléméh&m ge';._ r, [hl=mn: then, if
r<Zp and r—,—n<p,

f{z—i—h ’{ o 1: f’(z :.._}l_)n_zﬂ |:i
— . Dl ———— —mnz"l
. \Q‘%&) ol U J
Now pN .
Y _ i
(‘zi_}{;i —nn | = n{r __)1} 272 —k”—ll
O L2
\x;\g’ nin—1) ety L (;_n)n_?-n s
N A P
s\ "Hence
~O7 b 1) o 1 ({ry)i—r \
} 7 —¢(3)i c gy WV T e
N A Il VI I
=K{1(WP_- _ L) _L} 1
_ p-r—p  p=r) p—i)) i
Kpy

(_5:‘——*'9—?)2
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which tends to zero as % » 0. Hence f{z) has the derivative
¢(2). This proves that f{z}, which is plainly one-valued,
is also differentiable : hence f{z) is regular within | 2] = R.
Since nli"—1 as n-»co, mjna,‘[lfﬂ = mi'a,,[l.f" = 1/R,
and so the serics ¢(z) = 2 na_ 271 has the same radins of
n=71 N
convergence as the original series, Thus, if h{z) = f’(z)'\~,\
18 regular in [z |<R, we can show similarly that ifs)
derivative is Dn(n—1)a,2"-2, and so on. In other words,
we thus prove that ¢ power series can be differEniiated
term by term as often as we please at any potnt-pithin its
cirele of convergence. \%

The above theorem, which is the a,nalog}ko’"}f’a will-known
thoorsm in real variable theory, can_bd\stperseded by a
more general theoremn which is onowgf/the charecteristio
achievements of complex variable theery, 'This theorem is
as follows : ™

Lot (o) = wle)+uyyekdbaylibrary ong.in

tf ecch term u,(2) 48 regulargeithin a region I} and if the serics
ts wnifurmly convcrgemmb\@oug}wut every region 1) tnferior fo
D, then f(z} i3 rogulapQeithin D and all its derivatives may be
calerdated by z-e'rmAby\@vm differentiation., :

Far & proof @f this tlicorem, the roader is reforred to
larger treat-is?ig on complex variable theory. The simpler
theorem proyed above will suffice for tho purposes of this
boaole, $

Ir\rk:;”lémtcr chapter (§ 34) we prove Taylor’s theorem
thatyd function f(z) can be expanded in a power sories

m:f’u’n (z—a}® about any point a, provided that Siz) is regular
»=0

In |z—al<p, By combining Taylor’s theorem with the
theorem proved above, we sce thut the necessary and
suflicient condition that a function fiz) may be expanded
in a power series is that it should be regular in a region.
The Weicrstrassian development of complox variable
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theory begins by defining an analytic fnction ” of 2 as
a funetion expansible in a power serics, (See §39)

We now consider bricfly the detinitions of the so-called
elenentary functions of 4 complex varinhlc,

-
L. Rational functions.
A, o

A polynomialinz, ay-faz b... - a,z2m, may b rcgarde,({\
as a power series which converges for all vilues (01 2,
Since such functions are regular in the whole p]eulg,jgéﬁ@llal
functions of the type \ 3

flz) = gt ayz4... —f‘-f?mzm’ \ .“.’:,\\
bo—byz - o Bk
AN
are regular at all points of thoﬂ';[mm at which the
denominator does not vanish. e chinose a point z,
at which the denominator does\not vanish, and replace
z by z,4-(z—z,), the funotiomﬂ?} becomes

wedbralibragein g o in
By-bBiz—35) +...F Bz — zg)t
24
in which B, 3£ Q(“;ft readily follows that Jiz) may be

expanded in g I%}ver serles of the form E’cn{z —Zy)™m
§ 0

II. T'hé\‘éa':;;aonential Junction,

Forthe exponential function of a real variable, one

me ho “of development is to define eXpx as the sum-
f},@e ton of the power gerjes

AN , z* x8
...\;“; Ita+ 3 + 31 +... . . .M
\

and, on ﬂSillg. the multiplication theorem for absolutely
convergent series, we prove that *

eXp X . exp i’ — exp (x+4a').

* 8eo P.A,, p. 246.
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In the same way we can define expz as the sum-
function of the series of complex terms

28

zﬂ
1+Z+ §-I + .“:}_i +..-.

Bince the series converges for all values of 2, it defines a,{
funection regular in the whole z-plane. Such funetions are,
called integral functions. !

When z is rational, exp = is identical with the ﬂmﬂmn
e of elementary algebra, and when @ is irra idnal we
define e® to be ideptical with the function{exp z, the
sum-function of the power series ( a.bo*.m\y In the same
way, when 2 13 complex, we find it convenisfif tonventionally
to writo ¢* for expz. Since the f@r}nﬁ_la expz.exp {
= exp (z+£) can be proved by mul‘oiplmatlon of series,
whether z be real or complex, 1;}.113 Teal number & with a
complex exponent oboys the formal law of indices of
elementary algebra AN dbraulibrary .org.in

g2, 6P er

Thus we may d.eﬁn} the power ¢#, without ambiguity,

by the equatwn
23
= 12 }' 57T .

i 21 7 31

»

S

and, fxr s any positive number, 2% denotes the value
unaK \)wuous] y determined by the formula

. pZioua
af = g= s,

“where log a is the real natural logarithm of a.

The reador should notice how far this definition is removed
from the elementary deflinition * &* iz the produet of k factors
egual to 2" At first sight thers is no knowing what value
belongs to & number of the form 2¢, but its value is uniquely
determined by our definition.

N
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For real valucs of ¥ we have

o L 2k s
g U B T L T L)

n=>0 n! k=0 f . & U [ A

= CO8 Y ;"l- Ain Y2

gince the cosine and sine of the real variable y are dx ﬁncd ~\
by the two power serics on the right of (2},

:"\.
Hence g% = ¥ W = ¥ — ¢®olu . {n}’s\"'
We also see that, since ‘,\\“ 3
| efv | = |cisy|=1, fer | = | o= % i; .

\

gince ¢>0. Similarly, arge® — Iz = N he fanction €
has the period 2mi; In othier wordq., ;’c is any positive

or negative integer, or zcro, O
"'0
g2 — etFITE ST
vb
www . dbraulibraz b‘tg in o
for, when we increase zes 27, ¥ increnses by 2w and

this leaves the values of Sin y and eos y unchanged.  Jovery
value which e® is al{}e\to assume ig therefore takern in the
infinite strip —A&XF<w, or in any strip obtainable from
this by a parallel translation.

It is cagy, t0 show that ¢* has no other perind. If
¢r — ef, this hecessarily implies that z == {}2kwi. This
fullowa a:t\oncc boeause e = 1 and so

.'\

” "\Honce a—& =0, cos (-m)=1,sin{y—m) =0; and Lids
\ “leads to y¥—n = 2km, so that zn—Z_ﬁ = 2kmi.

Finally, e* never vanishes, for ese—n = 1, and, if
¢ = (, this equation wonld give an infinite valuf\ for
e~%, which is impossible,

Bince 2 = z44y = r cos 8 Lir sin 8, any complex number
may be written in the form z = re'f, where [2| =1
arg 2 =0, since we have now assigned s meaning to ¢f.

g cis fy—n) = 1.
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By term-by-term differentiation of the power series
defining e*, we readily see that

- gf = e*.

[k

TIL. The trigonometrical and hyperbolic Jfunctions.
We define sin z and cosz, when z is complex, as the

sum-functions of power scries, just as we do for sinzg\J)

and cos x when z is real. Thus O
z 22t & ETNPA
ginz = 2(—1)" =, cosz = Z(—1)" S5
et SR OIS VA o

and, since each of these power serics has an infiolte radius
of convergernce, sin z and c08 2 aTc integral Q.I}ctions.

By term-by-term differentiation of thésg power series,
we deduce at once that the derivativ:esx\oi' sinz and cos 2z

are cosz and —sin z respectively. (Y
The other trigonometrical fungbions are then defined by
. sinz 1 ',;.3; ) 1 o 1
ANz = | COb 2 D= S BRQE == e GOSRCZ = .
cosz’ tan g@c@ﬁﬁr aulffurary org.in  sinz

If we denote exp iz hge¥, according to our agreed con-
vention, we readily,dbtdin the resulty
co8 z-}—i\.xi 7 — ¥, cosz—isinz = e
leading to Ewler’s formulae
N

9, . : . 1. :
cfPP= - (e te ), sinz = — (eiz —e—i),
O 2 -

'rm'r\\t-hese formulae, and the addition formula for e

sin%zt-cos?z = 1;

' and the addition theorems

sin(z4-{) = sin z cos [-eos zain £,

cos(z+ £) = cosz cos {Tsinz sin {,
also hold for complex variables. As all the clementary
identitios of trigonometry are algobraic deductions from

N
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these fundamental equations, all such identitios also hold
for the trigonometrical functions of a complex variable.

Tho hyperbolic functions of a complex varizble are
also defined in the same way as for real varinbles. The
two fundamental ones, from which the othurs may be
derived, are

ginh 2 = 3{c* 7%, eoshz = e L o7, o
These two functions are clearly regular in *1113 bmmded
domain,

Tlhe important relations m\ ’
Bin 1z = z sinh 2, a0S 12 = CQBIME,
sinh iz = % sin 2, cosh 1z =) W

are easily proved and are of greafs us\fuhu\w fur deducing
propertica of the hyperbolie functiohs from the eorresponed-
ing propertica of the trwonometu(,dl functions.

If we write z = x4y,

itz (i sullhw;q;g:ﬂnos z sinh ¥,
and we sce that sin £ ban only vanish if
a:'\(im%h y = 0, cog x sinh y = 0.

Now cosh y221, and so the first cquation implics that
sin x is zere. “Hence & = nm, (n =0, +1, +2, ...}, The
second, {hen becomes sinh y = 0, and ths has onlv one
roo@«y— 0. Hence sinz vanishes if, and only if,

m(m=0,4-1,-+2,..). Similarly, we can show that

* cos z vanishes if, and only if, 2 = (n+{)m

IV. The logarithmic function,

When = is real and positive, the cquation ¥ =z has
one real solution u = log . If 2 is complex, however, but
not zere, the corresponding equation exp w =z has al
infinitc number of solutions, each of which i called a
logarithm of 2. If w = u-4iv we have

e¥(cos v sin v} = 2,

o 2
O

&'\
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Licnce we see that v is ono of the values of arg z and ¢* = [2|.
Hence u = log |z |. Every solution of expw = z is thus
of the form

w = log |2] 41 arg .

Since argz has an infinite number of values, there is an

infinite number of logarithms of the complex number z, (*)°
cach pair differing by 2mi.  We write N
Logz = log |2 |+ arg 2, ~\ &
so that Log z is an infinitely many-valued functioof 2.
‘The principal value of Logz, which is gbtained by
siving arg z its principal vahue, will be dendted by log z,
since it is identical with the ordinary logayithm when z
is real and positive. We refer agai n“fél.the logarithmie
furction in the next section, where miany-valued functions
are disenssed in more detail. Y

«)

V. The gencral power L% '.’3,'

So far we have only dgfingdipsShsr% sy, iAf = and
¢ deneote any complexsumbers we define the principal
value of the power [Z With [ :£ 0 as the only condition,
to be the number&)@iqhely determined by the equation

gz — ﬁ-zlngg-’

where log & {'the principal value of Log {. By choosing
other vajyes’of Log { we obtain other values of the power
whichmay be called its subsidiury values. All theso are
conpal %d in the formula

A\ * = exp {z(log {42073},

"\ Hence £ has an infinite number of walues, in general,
’ hut one, and only one, principal value.
EBxample. if denotes the infinity of real numbers
exp {ilog i+2kmi}} = oxp {{{{nid 2kwi)}
= exp (—§r— Zkn).
exp (—%m) is the principul velue of the power %
1f { = 0, Rz >0, we define [* to be zero.
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§ 9. Many-valued Funciions

In the definition of a regular funetion o in § 7, we
note that a regular funetion st be ulued  {or
uniform). Quite a number of clenentary [unetions, such
as 2% (¢ not an integer) log z, are sinz are nany-valueds
To illustrate the idea of many-valredness, let s consider
the simple case of the reltion w?=z On pabting
z = retd, w = Re'd, we oot L™

W

. . "
Btetid — peff,
. ) R
TFor given r and #{<27), two ohvious solud{ons are
wy = [4/7] 3 and w, = | 4/7] {f4[%?$fJ = —14/r 3

and these are the only continuapssolitions for fixed 8,
gince [4/r ] and —} /7| are the' My continuens solutions
of the real equation 2% = 7, rg30.

In particular, for a po.s{t;im real z, that iz when 8 = 0,
Wy == | \/y and w, — ,——«l[ 37 ], and hotle o) and s, are

e {301115}5 PUHEELAT Tor all value= of 2.

If we follow the elange in w; as 8 varies trom 0 to 27,
in other words, 3&3:&10 variable z describes a cirele of radins r
about the origim, w, varies continnously and we sec that
the final value of w, is [ 4/7] eb-2mi —| afr | == g

Henpedthe function w, is apparently discontiimous
alongsthe positive real axis, since the values just ahove
and"just below the real axis differ in sign and are nob

_zero (except at the origin itself). TIf, however, z describes

agthe cirele round the origin a sceond time, the values of

w,; continue those of w, and at the cnd of the second
eircuit we have w, = 1w, along the positive real axis.

We thus sec that the equation w? = 2 has no continuous
onz-valued solution defined for the whole compiex plane,
bub w? = 2 dofines a two-valued function of 2. The two
finctions w, = | /7 |e ¥ 459 wy = — [ /7] (38 are
called the two branches of the two-valued Ffunction
w? = z. Lach of these branches is a one-valued function
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in the z-planc if we make a narrow slit, extending from

the origin to infinity along the positive real axis, and

distinguish between the values of the function at points

on the upper and lower edges of the cut. If 04 = z,, in ~

fig- 2, the value of 1, at A(6 = 0) is | 4/, | and the va.Iue‘
oA\

'\
L 3 N

Fre, 2. “'( ™

? & ?
of 1w at B(0 = 27) is ~| 4/x,|. Since the cu‘t:\zﬁ’eatively
prevents the making of a complete circuit ahait tho origin,
if we start with a valuc of belonging.ba/the branch 4,
we ean never chiange over fo the braneh %,. Thus w, {and
similarly wg) is one-valued on the ¢lt-plane.

There is an ingenious method :of'rcpresentiug the two-
valied function w? =2 as ,a’:bne—valucd function, by
constructing what is knogwhdas a Riemann surface.
This is equivalent to re}%}é@@gbm“gr@i@a@‘y&mplame by
two plancs P, and P, ;age may think of F, as superposed

on Py If we makd\® cut, as described above, in the

two planes, we make the convention that the lower edge

of the ent in }:’1%311 he connected to the upper edge of

the cut in Polapd the lower cdge of the eut in Py to the

upper cdgih8Pthe cut in Py, Suppose that we start with

a value‘;};'df z, wl being tho corresponding value of w,

on %L:?\fﬂane Ly, and let the point z describe a puth,

starpg from 2, in the counter-clockwise sense, When

the moving point reaches the lower edge of the cut in P,

L (ierosses to the upper edge of the cut in P, then describes

\ ) another counter-clockwise circuit in P, until i$ reaches

the lower edge of the out in this plane. Tt then erosses

again to the upper edge of the cut in ) and returns to its

starting point with the same valae w? with which it started.

This corresponds precisely to the way in which we obtain

the two different values of 4z, and 80 4/2 is a one-valued
function of position on the Ricmann surface.
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There 18 no unigue way of dividing up the funetion
into branches, and we might have cat the plane along
any lino extending fron the origin (o jufinity, but the
point z =0 i3 distinguished, for the Dhnelion w = 4/2,
from all other pointa, us wo shinll now e,

We observe that, if z deserihes o cirele about any point
a and the origin lies outside this civcle, then arg z is ©ot
increased by 27 but rcturns to its initinl value, Flénce
the values of w, and w, are exchanged only \s'}L{;;’;‘z\'tunm
about the origin. Tor this reason the point z 7Q 18 called
a branch-point of the function w — +/z_ il “s we have
alrcady stated, wy(z) and w,{z) are calledlafgtwe branches.

Since turning about 2z = co mewligy by definition,
describing a large circle about the apfghe, the point z = @
is also & (conventional) branch-poifieMor w0 — /2.

The relation w" = z defines @b "n-valuwd function of 2,

H \
- - »’ > 3
since z has », and only n, difffrent values

VG O o, ),
The point 2 — @O _ :

e point 2 =@ i3 a branch-point, and the Riemann
surface appropelate to this function consists of n sheets
Py Py . ¥y Plainly z=1 is a branch-point for
0 = 4/&1) and the cut is made from z == 1 to z = 0.

F' Ao = Log=z, sinee w—= log r+i{6 +-2Ln), every
positite and negative integer % gives a branch, so Log 2
isém infinitely many-valued function of z. The Rimmann

D o . -
\surface consists of an infinity of superposed plancs, each
“eut along the positive real axis, and each edge of each

cu’g— is joined to the opposite edge of the one below. The
points 2 = 0 and z = oo are branch points.

For % = v/{{z—a)(z—b)} we make a cut on each plane
along the straight line jolmng the points z =g and z = b,
and jOill the p]anes P1 and }:"2 oross-wise a]ong the cut.
In this caso infinity is not a branch-point.

If w= Vilz—a;){z—ay)...(z—a,)}; when k& is even,
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we make cuts joining pairs of points a,, a,; and when

& is odd, one of these points must be joined to oo, as in

the case &= I. Tho edges of the various cuts on the

two planes are joined cross-wise as in the case w = /2.
Considerable ingenuity is required in constructing (N

Riemann surfaces for more complicated functions, but it , |

is beyond our scope to pursuo this qucstion further. (N

Nole on notation. In what follows we shall frequeznisl}
use w, z and £ to denote complex numbers, and, whehever
they are msed, it will be understood, without ;:further
explanation, that - ~N

w =l 2= abiy, { = E-fig)

Other symbols, such as ¢, r, s, may o eifi;s\lc;nally be used
to denote complex nmnbers, hut we{ 49 not specify any
special symbols to denote their real(and Imaginary parts,
EXAMPLES I
7 wigw . dbraulibrary . org.in
1. Prove that | z, —z, [* etz [P = 2z %4—2 24 % and
deduce that <

ot viet— B  HE V=) = [at 8|+ ampl -
all the numbers cpk}emcd being complex.,

/2. Prove thabethe area of the triarglo whose vertices are

the points 2N/ z; un the Argand dingram is h
RLss Z{(zg—2g)| 2y |1 tizy). o

Shovy@i‘d that the teiangle is equilateral if

N Zitatal = 22, oz, 2z,
PR

N\ 3. Determine the regions of the Argand diagram defined by
[2*—z2|<t; jz—0 |+l 28 =k (=0} | 28 4aztb |<r®,

In the last case, show that, if 24, 2, arc the roots of 28 +az+b=0,

we obtain two rogions if r<} zZi—zgf

4. A point P(a-rib) lies on the line 4B, where 4 i z = P
and B is z= 2{p. If @is—p*(a+ib), find the polar eoordinates
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of P and ¢ referred to the orvigin € as ol 2ol the real axis
as fuitial line. Dielicate thee posittons of £ and @ in an
Arcuned diagram.  1F £ move along she line A8 anl € is the
point z = —p, prove that the teiangles O, QG are similar,
and that the locus of @ i3 a eirele.

) atyly—ir _
U g =TT o 00, 0 LD
af -y 2\
prove that {f{z)—7(0)}jz » 0 ns z-> 0 alonyg noy radius {'I@}:tor,
but not as z—» 0 in any manner. AN\
4 6. Prove that the function uf{v = f(z), \\'!Lt;r'ci’.. ’
¥l 43 —y¥Hl—1 NN
floy =TTV (o) 0,
Ty
is continuous and that the [.‘-am(;h“\nﬁxighs';'u‘.u cijuations are
sabisfled at the origin, yet £{0) doud®@ive exist.
/7. Show that the funetion f{z)}'= /| my | is not regular

at the origin, although the L..mr,h'y Rivcrnamm cruuitions are
satisficd ab that point. . &3

B, TE feayiy- é%gﬂ@mﬁmw z, prove that

=)

)If =4[/t

~/ 9. Ifw —j>‘) Is a regular function of z such that f'{z) #
provu ihat, .3, >

e

(s

\ '\ J ,
& (B L)oo
I&L—}zﬂls the product of a function of & and a function of
X Ql w that
A £6) = oxp (st 4z +)
N\

\ 4 where a is a real and § and y are complex constants.
J. /10. Prove that the functions

() w =32 4 32— 22 41, |
{ii} » == sin & cosh ¥4 2 eos @ sinh y 22—y 42y,

both satisfy Laplace’s equation, and dctermine the corre:
sponding regular function 4 44 in each case,
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1. Tfw = ars sin 2, show that w = nx | T.ogliz- /{1 —25
aceording as the integer # ia oven or odd, a cross-cut being
raade along the real axis from I to o, and from —oo to —1
Lo ersate the one-valuedness of the Jogarithm.

I2. IF w = +/{{1—2z}{142%}, 4 the peint {2, 0) and P
& point in the first quadrant, prove that, if the value of w
when z = 0 i3 1, and 2z describos the curve OPdA, the valueA
of woab A s —i475. ™

13, If w = 4/(2—2z-}t22), and 2z describes a cu‘cloi }’f

sntre 2 = 14 and radiug /2 in the positive sense, dr,)stu‘{nme
‘thr* valuo of w (i} when 2 retarns to €, (i) when 2 grussed the
axis of ¥, given thut 2 starts from O with the xalue\{—\vﬁ of 2.

14. Prove that log(1--2) is regular in the z.plags, eut along
the real uxtiz from —oo to —1, and that this Quilelion can be
exputniled in a power zerica 79 .\

22z gl «?

N\

g T T g
2 3 4 A
convergent when |z | < 1. A o
15. Prove that the funetion ON N
Fi = 5 -w-.éj;u:a &llbl‘al%/. oE.in

is regular when |2 | < nd that ita derivative is af(2)/(1 2%
Henee dedura that Jffvi‘—- {14z)™

18, (i) 'ronge N\rf the exponential fimetion ¢f is a one.
valued function 0;' zZ.

{ii) Showg ‘{F;;ﬁ; the walires of z = of, when plotted on tha
Arganed gdiugram for z, are the vertices of an equiangitlar
pohgon\zmcul;t‘d in an equiangular spiral whose angle is
independent of ¢,

\L IF 0oy <., < a,, prove that all the roots of the
afrition

O S 1y
\ 7 lio outside the virele |z | = L,
18. Bhow that, if #is roal and =in 8sn $ =1, then
¢ = (ni+d)ntd log oot Jnata),
where » is an integer, even or odd, acearding as =in >0
orsin #<X0. [ ¢ = a+75, we have sin « cosh R = cosce 4,
. cos a sinh § = 0. Solve for a and §.]



CHAPTER TIIX
e\
CONFORMAL REPRESENTATION e\

§10. Isogonal and Conformal Transfornaat;ip’ﬁé‘

The equations w = u(x, y), v = vix, y) m:g.}‘:bg regarded
as sotting up a correspondence between a dgutin 2 of the
(#, ¥)-plane and a domain D’ of the (ua)-plne. If the
functions u and v are continuous, and Possess o tinnous

partial derivatives of the first orégiut each point of I,
then any curve in D, which h'is»a continuously turning
tangent, corresponds to a curvg in D' posscssing the same
property, hut the correspomfeﬁce between the two domains
is not necessaril ¥ One- one, e

For example, if o #3, v =% the circular domain
' +4*<1 correspoddsto the trianglo formed by the lines
u=20, v =0, %8 "= 1, but there are four points of the
cirele correE:ponding ta each poiut of the triangle.

If two~curves in the domain D intersect ab the point P,

(%7 Yol ﬂ’ﬁﬁn angle @, then, if the two corresponding curves

ﬁ”\mtersect at the point {u,, v,) corresponding to P

althe same angle §, the transformation is said to be isogonal.

Mf the sense of the rotation as well as the magnitude of the

\ angle is preserved, the transformation is said to be conformal.

\ ) Some writers do not distinguish between isogonral and

conformal, but define eonformality as the preservation of the
magnitude of the anglos without considering the sense.

If two domains correspond to each other by & given
transformation % == u(z, y), v = v(z, ¥}, then any figure in

D may be said to be mapped on the corresponding figure
n
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in D' by mesna of the given transformation. We have
alrcady defined isogonal and conformal mapping, but it
should be observed that, if one domain is mapped isogonally
or conformally upon anether, the correspondence between
the domains is not necessarily one-one. If to cach point
of D there corresponds one, and only one, point of I,
and eonversely, the mapping of D on I, or of I’ on D, .
1s gaid to be one-one or biuniform. Oy
Suppose that 10 = f(z) is regular in a domain D of the(")
z-plane, z, i3 an interior pomt of D, and | and O, are
two continuous curves passing through the point zg and
let the tangents at this point make angles ay, o, Wﬁ the
real axis. Qur object is to discover what is £hewmap of
this fi igure on the w-plane. Yor a reasor\“uhmh will
appear in a moment, we suppose that f'(z,) %‘8
Let 2, and z, he points on the curves@yand €, near to
zy and at the same distance r from zu, 80, ﬁhat

7 —zg = rethh, zgﬁzo retfs,

then, as r— 0,8,—~ o, and 8 ‘%‘“3{ ydbraulibrary org.in
The point 2, corresponds t6 a poink t, in the w-plane

and z; and z, correspond t@ points w; and w, which desceribe
curves Iy and 'y, Lef )

_‘uzn preh, wy—wy = poeh,

then, by the deﬁmtmn of a regular function,

= f’{zﬂ),

x’\"' . WU,
& lim = —
’§~.1 =2, #1 %
‘11‘1(];.31]'1(‘6 the right-hand side is not zero, we may write
it Re’t\ We ha\*e
~\J by
\ 4 lim 2577 = R i,
if.

re'l
and so lim (¢, —8,) = A or
lim ¢; = a;+A
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Thus we see that the curve I} has a definite fangent
at w, making an angle a, 1 A with the real axis.

Similarly, I", has & definite tungent at o, malking an
angle a,+A with the real axis,

It follows that the curves I'y and I’y cut «i the same angle
as the curves O and C,. Further, the wngle between thel
curves Iy, I'y has the snme sense as the e ofiveen C1C,s
Thus the regular function w = f(z), for which f'(z >0,
determines a conformal fransformation. Any srall, gure
in one plane corresponds to an approxivniatels “similar
figure in the other plane. To obtain one {jgire from the
other we have to rotate it through the angled = arg {f'(z)
and subject it to the maguification :

; D
lim © = B = | £ |-
It is clear that the magnificafion is the same in all directions
through the same point,'but it varies from one point to
anotheis ww. dhrauli ranyyorg.in

Iffisa regular'fun(.:ﬁion of w and w is a regular function
of z, then { ig g.degular function of z, and so, if a regien
of the z-plang(s. representcd conformally on a region of
the w~plamc;§d this in its turn on a region of tho {-plane,
the transformation from the z-plane to the {-plane wil
boe conformal. '

There exist transformations in which the magnitude

{the angles is conserved but their sign is changed. For

{example, consider the transformation

&

we=x—iy;

this replaces every point by its reflection in the real axis
anc‘i so, while angles are conserved, their signs are changed.
This is true generally for every transformation of the
form

w=fz ., ., . . {1
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where f(z) is rogular; for it is a combination of two
transformations

() & = 2, (ii) 1w = f(2).

In (i) angles are conserved but their signs are changed,
and in (i) angles and zigns are conscrved. Hence in the
given transformation, angles are conserved and their signgy, .
changed. Thus (1) gives a transformation which is 1sogonql
but not conformal.

We have seen that every reguldr function w(—‘f{z
defined in a domain in which f(z) is not zerogmaps the
domain in the z-plane conformally on the.‘eStresponding
domain in the w-plane. Let us now consider the problem
from the converse point of view. Givenapdir of differenti-
able relations of the type '\'*

U= u(zl ), v = 11}(5‘:, ) . . (2]

defining o transformation from (x, y_‘,l space to (u, v}-space

does there correspond a fewlm u % ST B&& :;f é7
Let do and ds be elements o\f ngtﬁ m b u v)-plane

and (z, y)-plano respectively. Then do? = dud-+dv?,
ds? = dx®I-dy? anckﬁ@, gince

du—adx—l— d?,dv_a—dx—f—éfdy,
oy

N \ /
AN dot = Edx?+2Fdxdy +Gdy?,
where\1

\ du duy2 u & 3
\ o _dwouw  Ovdw
b= (535) + (556) = bz By
AN

“~\./ ou\? dv\2
3 G —_— _ - —) .
VvV (6y) ' (ay,

Then the ratio do : ds is independent of direction if
E F

-

™

10 I
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On writing A% for £ (or @), where & depends only on
z and y and is not zero, the conditions for an isogonal
transformation are

(EJ_-u)z N (fi.)z _ (w): ) (r,)z o,
dx ‘e ey y

du du v dr LW
P = o — O
dr dy oy W
T |
The first two equations are satisfied] b ¥ writing ugssheose,
Va=huina, u, =hcos 8, v, — hsin 2, and & third i
plainly satisfied if \/
a—f = |1l \
oD

Z.

Hence the carrespondence is isogonalff*¢ither

(@) ux = v, 0o = --u, or (WPE = —1,, 1. =2,

Equations (a} are the CatLy,I’lj-"-l{icmann cruations and
express that wu-tiv = flzidy) where flz) is a regular
function of 2, ation8* (b) reduce to fa) by writing
—v for"y hSRr agﬂ l?#dﬁ'féglhthc image figure found by
reflection in the aeal' axis of the w-plane. Hence (b)
corresponds é&:"’isogonal, but not conforinal trans-
formation, ap?l\o it follows that the only conformal
transformations of a domain in the z-plane into & domain
of the wplane are of the form w = f(z} wherce f(z) is a
regulg,{;f}lﬁction of 2.

he case f'(z) = 0,

“We 1aid down above the condition that f'(z,) #0-
Buppose now that f'(z) has a zero * of ordor n at the point
« then, in the neighbourhood of thiy point,

f2) = fzg)talz —zittl 4,
where a 0. Hence

W -—wy = a,(zl._zo)ﬂ-{—l +...

A\
\0.~

or Prefgf;l =la ! PRI PR (ﬂ+1)31}+_..
* Boe § 36,
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where A = arg . Hence

lim ¢y = Hm{A+{n +1)0,}
= A--(nt1lay

Simitarly, lim ¢, = A5 (n41}a,.

Thus the curves I',, I, still have definifo tangents at
e, but the angle between the tangents is O\
{
lim {¢,—¢,) = (n+1}{az—ay). o
Also the linear magnification, lim (p,fr), is zero. (Hence
the conformal property does not hald at such &,pgn',nt.

For example, consider w = 22 In thislatgw = 2argz
ond the angie between the lins joining tho ofigin to the point
wy and the positive real axis is double/phe” angle between
the line joining the crigin to the corrggpording point z4 and
the positive real axis in the z-pland N\Lorresponding angles
at the origins are not equal because,’sﬁ z = 0, dw/dz = 0.

Points at which dw/dz =@\ \OF oo will be called critical
points of the tmn%formaﬁfd’ﬁwd‘éh'ﬁéd‘]ﬁsﬁw 2N, These

points play an 1mportan1: part in the transformations.

\
§41. Harmonig anctions

Solutions of Baplace’s equation, V*¥ = 0, are called
harmonic funetions ; and, in applications to mathematical
physics, shMmportant prohlem to be solved is that of
i_mdm 'a\functlon which i3 harmonic in a given domain
and 3 given values on the boundary. This is known as
Du‘k lct s problem. In the threce-dimensional case, if we
Jmeke a transformation from (z, y, 2)- -space te (£, 5, {)-space,

"\1 Vit will, in general, alter Dirichlet’s problem. I V{z, y, z)
./ I8 harmonie, and we malke the tranaformation

T == ‘#1(5’ 7?! g)! ?f = @!)2(67 7}’ g)a 2= ¢3(§: 1;"’ g)s

the function V,(&, 7, 1), into which V{z, y, 2) is transformed
is not, in general, harmonic in (¢, %, {)-space. In two-
dimensional problems, however, if the transformation is
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conformal, Laplace's equution in (#, y)-5 000 corresponds to
Laplaee’s cquation in {u, v)-space, and {lie problem to be
solved in {u, »}-space ix still Dirichlet's problem. To prove
this, consider a transformation

w = wlr, ¥, ve=vl, ). . .

where w = u4dv 13 a regular function of 2 = x-+1y, say
w = f{z}. Let 7 bea domatn of the (&, yl-plane thmughopii\
which f'(z) 3 0, and let 4 bo the domain of the (%, v)-plang
which corresponds to D by means of the given\trans-
furmation. G

If # and y are the independent vartablusgal V any
twice-differentiable function of x and ¥y, welaye *

o2V eV &y a5 av
2Y 2319 ety b 02 L2y L —— Py, (2
BV = o dut 2 o dudy + s d { o o, 4 @)
and  du= 2% dz + % 1y, dv =5 i ;Ix + (3)
- ax a-—g}- y’ "'.ti:? .a.—x . + E‘Lj 4 .
& Pty 3%
d tlibPaipar ;. . @)
%Wdﬂr{s gﬁgwj +dy“‘ o

Al

with a similar expredsion for d%,
On subatitutiﬂgi%or du, dv, du, d% tho oxpressions
(3) and {4), the\s}pression {2) for d2V becomes a quadratic
expression i the differentials of the independent variables
dz and dynd, on selecting the coefficients of dx? and dy*
we gety
BTNV (863 | o BV dudy | &V gan\? 8V du , OV W
GEN ot B+ imE i B a e e
LA (ai‘)’ BV Gube GV ev\r AV & OV &
NG T E \dy auav555§+575(é§) Bu byt Vo0 O
But we have already seen that u and v satisfy the Cauchy-
Riemann eguations
Su v gv du
dx oy’ fx 2y
* Bee P.A,, p. 233,
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and also Taplace’s equation. On addition we thercfore get

521 G2l o) LI F: A
C~—.--§—(:*:;'= — + i [ —F Tl .
&t &yt e fy3 l ok 2y

Now f'{z) = u,+in, and so the last bracket is equal
to | f7(z)]*, the square of the linear magnification of the
transfermation. Sincc this is not zero, it follows that if

"
l &2 "
¢ - 0, N
b= N/
) Gy? Y
o 29%3
then gV eV A 3
Gur | &R ' m'\ &

§ 12, Superficial Magnification

Wo have alrcady seen that the Iin’e’a\r’ magnification
at any point in a conformal ur'msfo?nntion w=f(z) is
|f/(z)!, it being supposed that f/(z’#0. We now prove
that the superficial magnification i 122 If 4 be the
closel domain of the wplanc \which corresponds to a

slosed domain D of the z- plmmﬂmwlrbwadyaﬁé is given by

4= azdz,w ”)
=[] |

by the well- kno%v@js t-heorem fer change of variables in a
double mtcgral‘* Now

&(u) 3& J  ou &r &y &u Zuy2 2uy?
c,{t&"’; bz 33_( ér cy T \éx + ;?g
by th wiichy-Riemann equations : but, as we have just seen,

~~;"\\ gu\® 4 cur? 12 au
AV & T\ Tlati: \ FACK
y“and so L
4 = [ j L Pdady,
YYD

Thix proves the theorem,

drdy,

*PA, p. 302; or Gillespie, Integration 40. (Tercaft
pited a3 G.1.) gratwon, p. 40. (Hereaftor
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§ 13. The Eilinear Transformation

We |1;1\'(' seen Ut o resalar Lo Lon e = f(z}, for

whicl f(z,) o4 0, gives a CONLERIOTS (1=t T nrf'sentatlon
of o (utam neighbourhoml of the poat z; of the z-plane
on a neighbourhoud of a point iy ol thi se-plane, and
that this representation is o nn!urn.al Tty ho expressed,

in another way by saying that by sueh a rransformatio )
infinitely small cireles of the 2 ]:Lmv correspond to infindtely ’
small eiveles of the w-plane. Therc are, huﬂ.ovm:;, non-
trivial conformal transformations for which Hu.s; ig? truo

of finite cireles: these transformations v;}Ll‘ now bhe
investigated,

Let 4, B, @ denote threo complex coigh: n.t*, A, B
their conjugates and z, 7 a (‘tlI]lp]()\\Vr piable and its
conjugate ; then the squation AN

(4 -+ A)ez+B2 1Bz w; R §
represents a real circle or a %I‘alght line, provided that
v db"ﬁ‘é‘%ﬂ%ﬁ 5’5”(3“+0 R £
For, if we writo = atia, B=1b i, O=ctid,
2z = x+iy, {1) bccdr;@s
¥ 4+br—by+ec=0

which is thg Pqnatlon of a cirele. Tt reduces to a straight

line if G'V“%(A +A) = 0. If r be the radius of this circle,
'\"\;‘ - E ﬁ _ E
42 42 a’

"\a’nd the circle is real provided that
b 4-b't e,
which is the same as condition (2).

Conversely, every real circle or straight line can, by
suitable cholce of the constants, be reprcscnted by an
equation of the form (1} sa,tlsfylng the eondition (2).
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The transtormstion

ez+f3 (3)

PP

7
where a, )3, v, 6 are complex constants iz ealled a bilinear
transformnation. It is the most general type of trans-
formation for whick one and only one value of 2 corresponds

. . . - 2\
to cach valve of w0, and conversely, Since the bilineard ™

tranzformation (3) was frst studicd by Mohius {175]()-18681}
we shall, followicg Carathéodory,* call it also a-_Mé{biiJ:s’
transformation. K7, \
The expression ad—pgy, called  the de;e@xﬁ’inant
of the transformation, manst not vanish. TP Gy = 0,
the right-haod side of (3] is either a constanidor meaning.
less. For convenience it iz sometimes gotded to arrange
that ad—fy == 1. The determinant ‘ii{;\the general ease
an always be made to have thelFalue unity if the
numerator and denominator of the fraction on the right-

hand side of (3) be dividad %ﬂéﬁégﬂa%ﬁb%é}-y,org,m

If we write .

w == {aly}+H(8y —QS}(‘{-’?’}: o= {=92:8 . (4
it is casily seen thﬂ{}'\“&'j
transformations 4).

Now w = gof@ corresponds to a trinslation, sinee the
firure in theM=planc is merely the same figuro as in the
z-plane with& different origin.

Cog@ff next w = pz, where p is real,  The two gures
n the\eplane and the woplane are similar and similarly
sit-p'sfx-m'l about their respective orizing, bhut the scale of
‘t"E( w-ﬁgur_e is p times that of the z-figure, Huch a trons-
Aormation i8 a magnification.

In the thivd place we comsider w — zeid,  Clearly

'w|=|z| and one valye of argw i3 04aroz, and so
the w-figure is the z-figure turned about the origin through

-
i3 equivalent to the suceession of

* Conformal Representation {Cambridge, 1932).

N
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an angle § in the positive sense. Such a fransformation
is a rolation.

Finally, consider w = 1fz. If |2| =r aud argz =40,
then |w|=1/r and argw = —8. Henee, to pass from
the w-figure to the z-figure we invert the forkcr with respeel
o the origin of the w- plane, with wnit redios of inversion,
and then construcl the image figure in the veal axis of tk& )
w-plane. O

The scquence of transformations (d) consistg) of a
comhbination of the ones just considercd ; of 'srhoso the
only one whick affects the shape of the figurcs & fnversion.
Since the inverse of a circle is a circle or @\straight line
{circle with infinite radius), it follows ‘4itnt a Mobins’
transformation transforms ecireles into drslos.

The transformation inverse to (& is also a Mobius’
transformation

—dutp t~3)( a)—py#0. . (O
W dbr a}ﬁvb_g‘f y Qrg in

Further, if we Iﬁrform first the transformation (3),
then a second \Ioblua transformation
\N
Z\ a w—}—B

Rt Pt s
}’wla:, 0.8 48)” 7 0!

\¢/
the roau’l} is a third Mébius’ transformation
§ : Az1B

“ :.‘ ; =
.\~«. Tz+A

where AA—BD = 113 ’8'}1 (a,’.S' ﬁ
Since tho nght hand side of (3) 1s a r(,gula.r function

of z, excopt when z = —§y, Mobiug’ transformations are
conformal.

If we write the equation of a circle (1) in the form
Azg+B:+BiL @=0 , . . (6
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where o4 and € are real, and then substituto
—8.-.{.‘--';—3 IS i

== — = -

yi—a G -d

3

in {0) we get an BXPTESSIOn (_j'f the form

Duw ~Ewt+Es+F = . s
where _ . =
= A3 —Byps —Dvd P

and . n
F = =1f3‘g --Bﬁﬁ "--bel]g . g

are both real, and it is easy to verify that the g
of w and @ are conjugato complex nwnbesgs
represents a cirele in tho w-plane, since i1y ¢i the same
form as {1). >

§ 14. Greometrical Inversion )

¥rom what we have just vE.vé'elﬁl:’it would be natural to
expect that thero would bg'.gaﬁf‘im}ijm@ﬂbg{a}ﬁbt»i_@ﬁgbﬁt-wecn
Mbius’ transformations and geometrical inversion.

Let S bo a circle oféchtre K and radius » in the z-plan-.,
Then two points B{D}vd P, collinear with K, su
KP.EP; =r% B, Called inverse points with res]
the cicele S, apd it is known from geometry that any cirels
passing throfigh P and P, is orthogonal to 8. In the cnse of
a straight(line s, P and P, are inverse points with suspocg
to g, iif\i‘?1 is the image of Pins. If P, P, and X are tho
points, 2,, and & we have

’r}’;\ﬂﬁ"k)(z_k” =7% arg(z—k) = arg (z—F), (®]

\ ./ the second equation expressing the collinearity of tho

v/ polnts K, P, P;. The two equations (8) are satisfied, if
and only if, Y

(2 “‘k E—IE - '3_ N
If S i3 the circle 1 kE—k) =1 N (6]

ditbiBitre=0, . . . (0
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which may be written

B\(. B\ BB -de
(Z + ?)( g ;:}) =T

we see that (10} is a circle with centre —B;- f und radius

B - ¢ .
N\ (—:;'-: : O

£ ’\.
Hence equation {9} heeomes g W

By on ER—AE AN
zl—f—;[-) 2—1—:{' = Ty ""\’\«'

which on simplification is O

Az i+Bzt B | @ =00 . . (11
We thus get the relation bctu-'f;gsri: 2 and ils Inverse %
from the equation of § by substituting 2, for z and leaving

£ unchanged. On solving (1B} the transformation is
www.dbrauzlib_ra -%(‘3

v Mz B

We now prove t-hg.,‘b&?eorem :

The bilinear transformation transforms two poinis which

are inverse with'respect to a circle into two points which are
inverse withxespect to the transformed circle.

If zaxid 2, are inverse with respecet to the circle (10)
then (LW is satisfied. Make the transformation (3) and
1&1’?}:11111 wy be the transformed points. We have

R ¢

: —Bw -8B+ 8
Q) e e P LA
AN YUy i —a
¥ ang, on substituting these values in {11} we get an
expression

Du\®4+-Fw, +EfH4-F = 0
where the coefficlents D, g, E, F are the samc as those of

(7); in fact we get (7) with 1 i
) ¥ replaced by w,. But this
is the condition that 1w ang w, are inverse lpoi_nts with
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respect bo the transformed circle (7). The theorem is
therefore proved.
The inversion {12) can be written as a succession of
two transformations
—Bw—

dwtB '

W=—3F, z;==

The first is & reflection in the real axis and the second ig ™

& Mhius’ transformation, 'Lhe first preserves the angles
but reverses their signa; the sccond is conformal, Feénce
inversion is an 150g0na1 but not conformal, tran sforma.tlon

Since inversion is a gne-one isogonal, bat nobﬁbnforma,l
transformation, it is clear that the result ofNw®, or of an
even number of inversions, is a onc-one nr)tforma] trans.-
formation, sinee both the magnitnde and $ign of tho angles
is preserved. In other words, the suéi,essive performance
of an cven number of inversions 13 eqmva]ent to a Mobing’
transformation.
§ 15. The Critical Point#wy dbraulibrary.org.in

If the z-plane is clgded by the addition of the point
# = oo, then (3) and {6} show that evory Mobius’ trans-
formation is a one\Qpe transformation of the closed z-plane
into itgelf.

Ify£0 the«pomt w = afy corresponds to 2 = oo and
w= o0 to(= —8/y; but, if y = 0, the points z = o0,
w= oo Lc}reqpond to each otlm Since, from (4),

\ 4 dw  ad—8y

‘i'.\ ?Z- o 'yu—rS)"

*

?ho only critical points of the transformation are z = <o

.

and z = —§&fy

These two critical pointa cease to be exceptional if we
extend the definition of conformal representation in the
following manner. A function w = f(z) is said to transform
the neighbourhood of a point z, conformally into a neigh-
bourhood of w = oo, if the function £ = 1/f(z) transforms
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the neighbourhood of z, conformally into w wiglibourhood
of t = 0. Also w = f{z) is snid to transforn the neighbour-
hood of z = oo eonformally into a nejchboantioond of wyg
if w=¢(l)=f(1/!) transforms the nedidorhood of
{ = 0 conformally into a neighbourhood of 10, In this
definition w, may have the value oo,

With these extensions of the definitions we may ng®
say that every Mébius’ transformalion gives a ongope *
conformal representation of the whole closid z-plans, en’the
whole closed w-plane. In other words, the mapping is
biuniform for the complete planes of w and z. { &

§ 16. Coaxal Circles

A\
Let a, b, z be the affixes of the thr{c;}mim.s A, 83, Pof
the z-plane. Then ')
ary 26 =4 f’B,

e—a

if the principal valye of t'l;e‘” u,rgument ho chosen, Let
4 and B BEYSPRIE P ARSI point.

2

Y

Tia. 3.
- If th;‘}t;wo ei'rcles in fig. 3 are equal, z,, z,, z, are the
x5 0L the points Py, P,, P, and APB — 8, we see that
arg . =0, arg2=b 2y~b
2y—at » & gzl-—a = —8, arg P —n-6.

Zg—
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The locus defined by the equation
g — =18 . . .
arg — =9, )

when § 1% a eoustant, is the are 4PB. DBy writing —#6,
sw—{f, —= -0 for {# we obtain the arcs 4P B, AP,B, AP,B
respuctiv eiv The system of cquations obtained by V:LFlel{j\
f from —z to 7 represents the system of circles which gan
be drawn through the points 4, B, Tt should be the,wed
that each circle must be divided info two partysbo dach
of whick eorrespond different values of 8. '\§~
Let T be the point at which the tangedt & the circle
APEB at ¥ rnicets AB. Then the tm‘mgle{TPA TBP are
sinilar sand
AP PT 74 ;‘
PBT BT TR 5

Henee T4/T'B = k2 and so T'i R a ﬁxed point for all positions
of P which sutisfy

: 7w\\z\»[r -dbraulibrary.org.in
1”“ )
\ ]

m

where & is 8 ed \t*mt Also TP2=T4 .7TB and so is
constank, Hem}c the locus of P is a circle whose centre
is 7'

The s tyr*m of egquations obtained by varying %
represcutsr & system of eircles. The system given by
{1 i\’a,’ systermn of coaxal circles of the common point
kiml\and that given by (2) a system of the limiting point
ki, with 4 and B as the limiting points of the system.

a CIr e e or if -+ O then the GL[‘CI&, becomes a point circle
\ ) at A or B. All the civeles of one gystem intersect all the
circles of the other system orthogonally.

The above important result is of frequent application
in problems involving bilinear transformations. It may
be used to prove that the bilinear transformation transforms
circles into circles.
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Suppose that the cirele in the we-plane iy
lwr—2A

W g

= }{?_

1 wo substitute for w in tern of z from ihe hilinecar
relation

'Q
ax | f FAY
== e - . « 7 3) w
Ve [-b « W
\
we obtain N
z-A ‘€4
*
e
ot \ 4

where \;
-2 B8 D Ta—py
)\’ — __ﬁ__ ¥ _ I' L )
ey P B
and so the locus in the z-plane is".“al“r;o a circle,
We may write (3) in the form
ww dbraulibragy drg |
W W raull ]:‘E:I'l'“}{l ng_l’_lg:.'ra

2\ :'}_z 2438y’

and sines . g"‘;\
\\ ?iﬂ-"ra — ]
) =48y 7
N2 .
reprcs:a%tlg::} cirele in the z-plane, the circle in the w.plane
corrgapbnding to it is plainly

’\.J
\ lw|=&aly|.
By taking special values of a,
in the w-plane CorTesp
z-plane are easily det,

8.y, 8 and k the boundaries

onding to given boundarics in the

ermined,

locioll'(:xiﬁgli})lrt ﬁ{u-= —1 8/y = i and k = 1: since the
- = 1 iz plai : o s

this axiz corresponds to thp_p ainly the real axis in the z-plane,

oo - cirelo | w | = i .plane :
this will be the unit cirele if, in a.(11 dii‘]ion !i":’ }l' [-_l-nl t)}'nla uw-p.
1 _ .
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§ 17. Invariance of the Cross-Ratio

Lot z,, 24, 2, 24 be any four points of the z-plane and
Yot wy, 1, twy, wy be the points which correspond to them
by he X abins’ tmmfor*natmn

—etf M
vato RS \
If we suppose that all the numbers z,, w, are finitg)
we bave ~\
2.+ 7.1 ad—Fan AR
W —rt, = i S ff) - ‘5: S 2,52},
Ve yr 0 (yrdiya AN

and hsnee it follows that

i“‘.‘-f.?_"‘_"'?f,"-.‘)(u%_wﬂ-} — ("’1""1’526 \"2) 2)
(2o —wey) (g —104] {21_"2}\ 3_34} )
The right-hand side of {2} is the crdss—ratlo of the four
points z,, 24, 2,3, 27, and 80 wel Miave the result that the
CTOSS-THEo 18 invariant for thﬁ\mﬁﬂﬁiﬁﬂnbﬁml}r 'b]r'}g in
If cquation (2} be smtftbly modified, it is still true if
any one of the numbcrs %, or one of the numbers w, is
irfinite. For EKdIIlp]{‘“)}‘t zy = oo aud w; = o0, then

\ Us— Wy %%
.‘ wy—UYy Za—iy

. . (3

Now supp 'sé?timt Zpo oy (r=1,2 3) be two scts each
confoinjuglthree unequal complex numbers. Suppose
first that these six numbers are all finite. Then the
equation

N N (w0, —w){wg—105) _ {21—~2}{z,—22) ()
0 (wy—wylwy—w)  (zy—~2)(za—2) )

) 3

when golved for w leads to a Mdbius® transformation which
transforms each point z, into the corresponding point w,.
The determinant of the transformation has the value

ad—By=(uwy —wy)(Wy —wg) (wy—wg) (2 —24) (2, —25) (22— 23) 0.
D
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It is also clear that (4) is the enfy MGLins trosformation
which does so. The cesult still lolds, 1f ¢80 be snitably
modified, when one of the numbers z, or e, i+ inlinite.

The equation {4} above may be used 4o dind the
particular transformations which tean-fireer one given
circle inte another given eirele or steaawht Tes A cirele
ig uniquely determined by three points an it cineamferende )
and so we have only to give special vahes tocach of*6he
three sets z,, w (r = 1, 2, 3) and snubstitute 1l ij;.g,:l}f'

N

Erample. Lotz =1, 2z, =1%, z,= 1 wy, =0,
wy = 1, wy = oo then wo got, nfter substitod by
l—z
=fe—, . D . . 5
w i 1.z ] N\ J ( )

i

which transferms the cirele ] z ] = 1}}’1{() e el axis of
the w-plane and the interior of the ofPel¥ | 5 [l into the wpper
half of the w-plane, \ o

S
The easiest way to prove tBi$ Is as folluws, 30 nation (5)
i8 equivalent to ) o
www . dbraulibraryerg.in .
Ny P —1

= — —.
A |
Th b W\ | i r
< c:'nundacry 2421 corresponds to | w—7) - W +],
wh.lch ig the 1'ea\,1\§fxis of the w-planc, sinee it is {he ocus of
points equidiglant from w — -t
bSmcc Fh(—%;‘f:ent-ra =10 of the circle corvospuniiz to the
pomt w&M, in the upper half of the w-plane, the jateror

of th ’;@5 le !2] =1 corresponds to tho upper half of the

AN . .
AL \Bimilarly, since w — —ic

.j'.’@f the circlo Iz 1 =
“\ “aw-plane.

orresponds to g - o, the wwiside
1 corresponds to the lower hali of the

. It. may be observed that although this usc of the
;‘Tlf_"af‘lm’;\ce of the tross-ratio will always datermine the
16bins’ transformation which transforms any given circle

into any other given circle (or straight line), it is nob
necessarily the easiest way of doing go.
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Thus, in the previous example, sinee z=1 and —1
currespond to w = 0 and co, the transformation must take
the form

~ kfz—1)
ozl

Sineo z = ¢ corresponds to w == 1, we ecan determino k¢ thus

2 A
E{i--1) A
RS A \J
from which 1t readily follows that & = —4, and we nbtam {5}
akove, Q\

§ 48, Bomse special Msbius’ Transior@@*mns

1. Let us consider the problem of i e g all the M 6bius’
transformations whickh fransform t?le kaj plane X(z) =0 into
tha wnit cirele L w | <L

Wo obaervo first that to _go‘mtq 2, & symmetneal with
respect t0 the real axis correspond points w, 1w inverse
with reapect to tho um‘!;"f’@féhé'aﬂf bﬁﬁémlﬁ&me {Sce

§14.) In particular, the origin and the point at infinity
in the w.plane eorleﬁgﬁ‘nd to conjugate valucs of z. Let
the required trag{écmwtwn be
O az+p
e . w= .

& y2+d
Clearly ¢ ;)xEO or the pointa at infinity in the two planes
Wi m}.k “porrospond.  Since w =0, w = oo corrcspond to

£\

o, 2 = —8/y we may write —Bjo =4a, iy =4
&ud
AN
\Q, L
\ y 2—d"

The point 2 = ¢ must correspend to a poind on the circle
|w| =1, 80 that

e B
y =&l |y
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hence we may write a = ye'?, where ¢ i real, and obtain

z-—r .
W= - e!f} . . . (l)
Tl

Bince 2= @ gives w = 0, a must be o point of the wupper
half-plane, in other words, In==0. Wit this condition,
(1} is the transformation required. \ ‘\
\9,
II. To find all the Mobius' frans f)f‘.'rh'!'e'fr"ﬂ?i-&:‘d}{h'ich
transform the unit circle |z [< 1 into the unit circighw 1.

¥

P\
az ‘)
Let w="4E )
Z \
_ s A
In thiscase w = 0 and w — o must co:{rbsyu_.m] to inverse

points z = g, z = 1/, where |a [qu Henee —ffa = a,
—&fy = 1/a, and so WV

/
. N

«o
e z—a _Nad z-a
W= - l’éi = T
z— 1% o
. www,dbrauﬁ’brar‘y“.org.iry “
The point 2 = 1 corresponds to a point on | w | = 1, and 80

Az —a
o=

It follows thafpaf 0 is real, ag —

AW

ad
i

veif and so

\/ z—a .
:\ W =_ etld,
\v az—1

'\;../ ) .
Thi®is the desired transformation ; for, if z = «i¥, @ = beih,
then ’

S

W

el —beid
beli—n—1
If 2 = ret¥, where #<1, then
|t—a |~ gz—1 2

=7 ~2rb 008 () —\) 12 (br2—2¢b c0s (Y—A)+1}
= (r"—1)(1-4%<0,

I
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henee [ w <1 ; in other words, the interiors of the circles
earrespond, '

The identical transformation w = z iz & special case of
the above: if the point 2 = ¢ corresponds $0 w = 0, then
¢ = 0 and the transformation reduces to

W = zeif, , '\t\,'
if, in addition, dw/dz = 1 when 2 = 0 we get Ve \
N/
w=z. & N\
N
11, The reader should find it easy to vcnfq\th'lt the
transformation AS
plz—n)
w= )
p-—dz 'x:’\\'
maps the circle |z =p on the wgil \r{'le lw|=1 If

fo<p it maps |z [<p on |w |11 @nd |z |>pon lw|>1
If]aébpitmq_psiz!>p0n|wl*<;l and |z [<pon|w[=>1.

TV. Representation of t?w s;pa ed by three circular

aree on g rectilinear tnangl’e

Conmder t}.u'ee m{clgs in the z-plane intersecting at
the point 2 Y
A\

1‘au rary.org. in

\’: z-plane Fro. 4. w-plane
The angles of the curvilinear triangle BOD of fig. 4
are such that a4+8+y == 7. Consider the transformation

= k?;b. . L) . - (l)
r—



54 FUNCTIONS OF A COMPLEX VAWIABLE

The point A(z = a) corresponds 1w - sl Blz= 8
corresponds to w = 0. Fupuation (1) vy B wrilten
A‘[rl {;]
w—k = —- - —,
z--u

or w' = A2/, where w' = w-k, 20 —z2-« SRR k(a_b)‘s\
Sinee the changes of variable front w o pt e itz Lp\'z(".
are mere translations, (1) is a pure inversion -l refleXion.

Since z = a corresponds to w = o amd ek of {iteighree
circular ares BC, CD, DB passes through o1 they ozﬁrr_espond
to three straight lines in thew-plane. The taghyves HO,.BD
which pass through B correspond to twagw! Hght 111.1&3
passing through w = 0, and the are CDyba o ot ruight line
which does not pass through w = &

It readily follows from (1) thadwthe sheded arcas of
fig. 4 correspond. o\ Id .

With the usual conventiomof sign, we regnri @ motlon
round a glosedysimplbreoplatgrinsuch as a circle, In the
clockwrige sense as positivedor the area cutside aurt negative
for the area inside the tontour.

If, by any confermal transformation, thice points
A, B, C on a &dssd contour in the z-plane corrospond B0
the three polts 4', B, ¢’ in the w-plane lying on the
correspondingelosed contour, then the interiors eorrespond
if the Qggu?s A", B, ¢ ocour in the same (cmmt-or-clm;kwise)
ord%@' the points 4, B, €,

N\WE can oo in this way that the shaded arcas in fig. 4

&otrespond. It also follows that the curvilinear triangle
\ Tormed by the ares AC, 0D, D4 in the z-plane corresponds

to the portion of the w.plane A'C'D'A" where A’ is the
point at infinity.

EXAMPLES II

1. ()} Prove that, if y = Py, v = —y/2t YT hoth

v and v satis.;fy Laplace’s equation, but that iy i3 not 2
regular function of z.
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{ii} Zhow that the familivs of curves 4 = const. v = eonst.
eub orthegonally if « = 2%y, v == 2>+ 2 but that the
trunsformarion represented by w 4w is not conformal,

2. Provo that, if w = w4dby/s, O<Ca<b, the inside of the
circle x8Ly? = a? corrcsponds to the inside of an ellipse in
tha w-plans, but that the transformation is not conformal.

3. Prove that, for the transformation w? = (z—a)(z— BN
the eritical points aro 2z =a, 2 == 8, 2 = ${a+8}, w :-.\'0,
w = - Lite-— 8 . \

Show also that tho condition that 2 = < is not a~gritical
point of the transformation w = f{z) is that lim z“;ff(z) Toust

zorod &

be finit

N

i not zero. <)
by tho inversion transformaligny z = Er e pt,

z =k/p%, whero rp = EEN ¥t = 22yt 422,
o = £4--nf {2, the t.Wice—differentiab]{x {unction Viz, ¥, z)

becomes Vi{§, n, {), prove that if $
(85288 4 8%y 4 82083V, =0, then
{ 32;"8‘3:2 + &ayr +~§'§;fézzl (V,-"-r) =q,

4, If w = cosh 2, provo\fﬁi"igﬁq;}ﬁléagyel?tﬁgfyﬁﬁg%éginn of the
w-planc which corresponds to the rectangle bounded by the
lingp o =0, =2, y &0 ¥ = I is (r=inh 4—8)/186.

6. If @ iz recal gchL\G< c<7, find the area of the domain
in the w-plane $s¢hith corresponds by the transformation
W =e* to tho %ctangle a—ecsirsinte, —e=ly=ia. Find
the ratio of ghle/areas of the two corresponding domains and
prove thapMthe ratio —» 6% as ¢ - 0.

7. Shege’that, if the function w = f(z), regular in |2 <R,
maps{the circle {2z | = r<{R on a rectifiable eurve € in the
wopldais, then the length of € is given by

a3
&

J" | f(reif) | rdo.
1}

Bhow that the Iength of the curve into which the semi-
circular are jz| =1, —iw=largzsg}s is transformed by
w=4j(1+2)1s 2y/2+2 log(l++/2}. (Sec § 22, equation (4)).

8. Find the Moébius’' transformations which make the
sets of points in tho z-plane (i) a, &, ¢, (ii) 2, 144, 0 correspond
to the points 0, 1, w of the w-plane. In case (ii) show by

N

o
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sketches the domains of the w-plane and z-plano which
corresponel,

9. ¥ind a Mébius' transformation which maps the circle
fz|<<1 on [w—1|=1 and makes the points z == 0,1
correspond to w = }, 0 respeetively. s the bransioination
uniquely determined by the data !

10. Find the transformation which maps the ouizids ofy
the circle |[z] =1 on the half-plane Rw0, so tlar thes
points z = 1, —4, —1 eorrospond to w = i, 0, —i I‘e“-'s']n-ct-iymy.
What corresponds in the w-plane to i) the lines are z p z-.ﬁ:p:isb.,

| 2| = 1, (it} the concentric circles |2 =7 (r=1) Yad

11. Prove that w = (14-iz)/(i+2) maps the &art of the
real axis hetween z =1 and z = — 1 on & sd¥ubivels in the
w-plane,

Find all the figures that can be obtain(‘.g_ish‘&;m the origmally
selected part of the axis of x by successidodpplications of this
transformation, N\

12, ¥ind what regions of the ‘w:-pla.ne correspond by the
transformation w = (z —4){{z+4) %6 i) the intcrior of a ecircle
of eentre z = —i, (ii), the region 4 =0, =0, {244 < 2.
Tllustrate Wwﬁi'&gjfﬁ%ﬁg{hrgﬁ%ér%ﬁgt the magniiﬁca.t-ilon is
constant along any circle with z = —7 as centre.

13. Let Oy,  z—apf

: =r and O, |2—2,| =7, be two
non-concentric circol‘e’syl\ the z-plane, C, lying entirely within

Cy. Bhow thatlif ¥'=a, 2 — b aro the limiting points of
the system of ccﬁxal circles determined by €, and €, then
w = k{z—b)/{p=t) transforms ¢, and €, into concentric
circles in, ﬂ)e w-plane with centres at w = 0. If the radii
of thespsgoncentric circles are p1 and py, show that, although

there~ighan infinite number of such representations, py: pa
is \qonsta.nt.

\I4. Prove that, if 4 — {az -+ )/ .

O v that, v2+8) and ad—fy =1,
'..?’her;_ tsh|e ‘]mea,r and superficial magnifications are [yz4-8 7%
W | VZ .

1 Shm;’ th‘a.t th‘e eircle E}.'Z—F'S | =¥ (y # 0) is the complete
00us Of pomts iIn the neighbourhood of which lengths and
arsas are unaltereq_ by the transformation. Prove that
lengths and areas w1t_hin this cirelo are increasod and lengths
and areas outside this circle are decreased in magnitude by
the transformation. (This eirelg is called the {sometric circle.)



CHAPTER IT1

SOME SPECIAL TRANSFORMATIONS \ ™

% Ny

§£492. Iatreducticon N

The fundamental problem in the theory oiqélﬁorma-l
mapping is concerned with the possibility eftrinsforming
conformally a given domain I} of the zepline into any
given domain I of the w-plane. Itis sqfﬁcient to consider
whether it is possible to map con‘f:'QfmaHy any given
domain on the interior of a circleN\NFor if { = f(z) maps
Doon i<l and w=F({) mapy D' on | {|<1, then
w = F{f(z}} provides a conformal transformation of D
into I \a{}uf\fréclbr‘aulibl'ar‘y_org_in

The fundamental existefice theorem of Riemann states
that any region with alduitable boundary can be conformally
represented on o ci;-:qle)y a biuniform transformation. Rigor-
ous proofs of tlﬁ{\s’:’tistence theorem are long and difficult,
and it is beyond our scope to discuss the question here.

In the gpplications of conformal transformation to
practical }fﬁ)b]cms, the problem to be solved is as follows:
given “@r}) domains D and D' with specified boundaries,

. find\thé function w = f(z) which will transform D into D’

sglthat tho given boundaries correspond. Although, by

Bicmann’s existence theorem, we can infer the existence of

2\ Jthe regnlar function f(z), the theorem does not assish

\

ud to find the parbicular funetion f{z) for cach problem

whose solution is desired. We have seen that when the

two domains D and D’ are bounded by cireles, it is fairly

easy to find the Mobius’ transformation which maps D

biuniformly on J’. Sinee for any arbitrary boundary

curves there is no general method of finding the appropriate
)
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regular function f(z), it is Important to know ihe types of
domain which correspond to each other wlien fiz) is one

of the elemeniary functions or a combinutiin of several
such functions.

In this chapter we discuss some of the most useful
transformations which can be effected by clementary(y

functions, The reader, who is mainly intere: hd in s
application of thesc transformations to practic.! pr f:lﬂcxﬁs,
will find the speeial transformations discusse] diote of
great value, but he must refer to other treatié &/for the
details of the practical problems to which ’f:[ir.‘y can be
applied.

Many uscful transformations are obtfu& d by combining
several simple transformations.

For exampls, the transfonnatlgn hy

(1-}-2% ———1(‘1 %R

\-'W\\-'%b]“al{mﬂ_r_\@(‘—g 3? . . -« (I

sacms af first sight sorr\1hat complicated, but on cxamination
it iz seen to be g, coszbl ation of the successive simple trans-

formations, Z_z\;g__HZ t=§2w.__t__"‘_
O 1-Z° £l

It can hez shown that (1) maps tho eircular scetor | 2 [<1,
0 vrg z?\fn-, conformally on the unit circle * | w |< 1.

§ 26\ The Transformations w == z#

"\ V Lobw = u+w = peid, 2 = 2-{-iy = reif, then it follows
" at once that P =1"d = nf so that

U8 = r(cos nf -1 sin nf).
From the equations
== 7" 008 58, p = " gin nf,
* Compare § 24 IV, equation {8),

.. (b

with a = .
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cither 0 or # may be climinated, giving

uz_l_t.z = yif = (332‘]'_@‘2}“,

.
-
—
(2=
—

or tan nf = = . . . . (3
%

Equation (2) shows that the circles r = ¢ of the z-plang’y
and the circles p = ¢" correspond, and in particular, sha™
points on the circle r=|z| =1 are fransformed hito
points in ihe w-plane at unit distance from the Brigin.
The linc: 6 = const., radisting from the origid® of the
z-planoe, are transformed into similar radial liMes ¢ == const.
It shouid be noticed, however, that the ling whose slope
is f in the z-plane is transformed into thﬂ\}ine whoese slope
is nfl it the w-plane, Since z =10 is.d\ctitical point of the
transforimslion, the conformal property does not hold at
thiz point. o\ o

In the simple caso w = 22,the angle hetween two radial
lines in the z-plane is donbledbralibracplang.in The case
w = 2? is typical, and weishall now consider it in greater

detail, <
We consider ﬁ;_'g‘e"ﬁ,\bho tmportant difference between the
transformation == 22 and the Mobius’ transforrations

discussed in fhe preceding chapter. In the latter, points
of the zplae and of the w-planc were in one-one
rorrespoiidenice. For w= 2%, to each point z, there
corrcspenids one and only one point w, = 22, but to a
paiés, there correspond iwo values of z, ¢ = [v/wy ],
&3="—|v/w,|. If we wish to preserve the one-one corrcs-
~opondence between the two planes, we may cither consider
”\; + the w-plane ags slit along the real axis from the origin to
\/ infinity, or clse construct the Riemann surface in the
w-plane corresponding to the two-valued function of w
defined by w =22 Tho metlod of constructing the
Riemann surface was described in § 9.
If we use the cut w-plane, then the upper half of the
z-plane corrcsponds to the whole cut sw-plane. There is
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& one-one correspondence between poinds of the upper
half of the z-plane and points of the whole w-plane, and
8 ohe-one correspondence between points of the lower
half of the z-plane with points of the whole woplane ; but
if we choose one of the two branches of w — 22, say 1wy,
the cut plane effectively prevents our changing over, \
without knowing it, to the other branch w,. 'The positi¥e™:
real z-axis corresponds to the upper edge and the negdtive
real z-axis to the lower edge of the cut along the positive
real axis in the w-plane. D

If we use the two-sheeted Riecmann mm”:}ee in the
w-plane, the sheet P, corrcsponds to the upgw¥ half of the
z-plane for the branch w,, and the shoatnd?, corresponds
to the lower half of the z-plane for t’l}{ branch w, Thus
there is a onec-one correspondentg\ between ithe whole

z-planc and the two-sheeted Riemann surfuce in the
w-plane. »

For w = 2% yhere n is alfositive integer, a wodge of
the z-pla-new(\;f%%f; Eg;r n%%&ofggﬂs to Lﬁe whole of the
w-plane. If we dividesup the z-plane into # such wedges,
each of these corresparntds to one of the n sheets of the
fi-sheeted Riemag\n\iw‘rface in the w-plane.

If, for w = 2% e cut the w-plane along the negative
real axis, than” the shect P, of the Ricmann surface

correspongde 46 the half-plane Rz20, and the sheet P, to
the halfeplane Rz <0,
2N\

§ 21 Further Consideration of w — z?

%" From the equations

W= u-Lip = {x4-iy)? = 2~ ¥ +2izy,

U= :::2—~y2, = 2xy., . .

By regarding » and v as curvilinear coordinates of points

in the z-plane, the transformation w = z% can be examined
from a knowledge of the curyes in the z-plane which

we have
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correspond to constant values of 4 and v, This method
is frequently used in applying the theory of conlormal
trunsformation to practical problems.

Hquations {1}show thut the curves » = const., v = const.
in the z.plane are two orthogonal families of rectangular 'S
hyper .oJ] 8.

The veader will easily verify that the shaded ares in \ \
the z-plane of fig. 5 between two byperbolas 2zy -—Ql,

l ‘ ‘
L) L] Vo ¢
; #%¢
&/
RN
N\
A, h 7
1, .
f ot v, i )
i v / //,
Y y
) > ///é}_’
%—"' & a0 :
[ kg L 4 y ! L3
H wé' .
G . o) 1
5 ™ .
* O i
K LAY '
~ \a\ry.w._d braulibrary.org.in
X
‘.:”'
£-plane “<\ w-plane

N Fre, B
,\\q,l

Zxy = v, corrogPonds to the infinite strip of the w-plane
shaded in thex“ﬁgure Hence w = 2% maps the region
befween tw&hypwboﬂas on @ parallel strip.

If %Is at infinity, the point B, is also at infinity,
and the/interior of the hyperbola ABO is transformed
intg\the part of the upper half-plane above the line

4!3 Glf
"\ We also observe that the transformation w = 2 makes
\/ circles | 2—a | = ¢, (a,c real), in the z-plane correspond o

limagons in the w-plane.

Consider the eircle
z—a = ceid, . s @
then

w—a?+c? = 2¢{e cos 04 a)e’d.
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Henee, on writing w—a?- ¢ == £, 20 tho L the pole in
the w-plane is al w =a? ¢ the polar ceastion of the
eurve into whicl (23 is translorned 35 e e

B o= 2ac+2¢* cos 0.

When ¢ = ¢ the limagon Dbeeomes o camiiail. This is
the case if the circle (2} touehos Oy at the: rezin,

¢\

7'\

§ 22. The Transformation w = 4/z G

S )
From the equations AN
\\
Wt =z, 2w =1y, NN . (1)
we get

¥ = dul(ut—x), y® — o2 Il )

By means of the first of the equatimi}hi_}, tre U straight
lines % = const. eorrespond parabblus with vortex at
=% and focus at the origitvef the z-plane. To the
orthogonal, systyn, af ikl fines v == const. we s
by the second of the egﬁatiohs (2), there corresponds
another system of comfocal parabolas with vertex at
= —p N

Consider the I{i}:ﬁ\cular parabola of the first system
corresponding tp\)he value s = 1,

ol P=4l—x). . . . &
Tts transform in the wplane is the line through the point
w == I~paralle]l to the v.axis. The points, 4, B, ¢ in
figaBidorrespond, in that order, to the points 4’, B, "
.T.{'w reader can easily verify that the shaded areas
“yeorrespond, the two parabolas drawn corresponding o
“values % = 1, and o ty( >1).

If %> 0, the region developed in the z-plane is the
area outside the parabols (3), which accordingly corresponds
to thflt part of the w-plane to the right of th(; line « = L.

. if tlleg barameter % fends to zero, the parabola
y* = du¥(u’~2) narrows down until it becomes a skt
along the negative real uxis 0X,, which is a branch-line.



~ \J

\V4

SOME SPECIAL TRANSFORMATIONS 43

Hence the portion of the we-plane between the line w = 1
and the line % — 0 corresponds to the por’olon of the
z-plane between the parabola ABC, ¢ = 4(1—z), and
the cub nlong the negative real axis OX, from the origin
to -0,

[
S
N/
_________ .Yf.-.-_ ’:','
3 )
FervE 9\
: s
AN\
¥
M
2 plane [':\thluue

Fra. 8. ;‘,‘

Hence we see that the portwﬁ ﬁ the w-plane Ruw =1,
corresponds to the whole é“"gﬂ&tk@”b‘a«%i hear wiergigalive real
From O to ~o0,

‘Tho simple wplang s &smcmtcd in a one-gne corre-
spondeince vrlth i tw@\shectod Riemann surfaco covering
the z-plane. tWo sheets of the Ricmann surface
would be connbebe 1 along the cdges of the cuts along the
negntive real axis of the z-plane in the usual way.

The ligey% = —1 plainly corrosponds to the same
parabold \/" = 4(1—x) as docs the line %=1 Hence
the poction of the w:plane to the left of the line . = —1
cortesponds to the rogion outside thoe parabola ABC
sliich lics on the second sheet of the Riemann surface.

If we combine w = 4/z with a Mobius’ transformation
' by writing { = {2/w)—1 we see that the transformation

{=——-1 . . . 4

transforms the region outside the parabola (3) info the tnterior
of the unit circle in the [-plane. The points z=1,2=14,
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t = o correspondd to the points £ 1, 0 0 = —],
The foous of the parabola (3), = - 0, liew cvicite the region
of the zplane which iy under corcideraion, and it
corresponds to the point § = oo owfsif 1he unik circle
| £ =1.

The reader should obseryve, however, thai e preceding
transformation cannot be used to represnt o (nside 'O\f:\
the parabola ABC on the inside of the unit cirdle. g

\

The transformation w = 4z just. considoa 1, iJbagtrates
an important point in tho wse of many-vali] lyNons for
solving problems in applicd mathematios,  The Lferformation
t = y/zcould be used to deal with a potentinljaudlem in which
the field was the region owlside the parabola W of {ig. 6, but
it could not bo uzed for a problem in wldgh" he ficld was the
space inside this parsbola, since iwpopdints close to each
other, one on each edgs of the cut aln}vgf the branehdine 0X,, .
will transform into two points on t-};é wxis of @, one in the upper
and the other in the lower half'blanc. Since thess points
are not closer wogatbuathbiEROPEM | they wonld correspond
to different potentials. I :ilr,'imporm.nt, to realize that wo
cannot solve potentiale pr’o'blems: by using transformations
which require a branéiNine to bo introduced into that part
of the plane w}li?h,\rgpresgnt.s the field.

§23. The Ttansformation w — tan?(lo/z)

We hawé-just seen that w — 2{4/2)—1 cannot be used
Yo mapahe region inside the parabola y* = 4(1—=x) on the
unib (eirele | w|<). We now consider a transformation
wihich enabies us to do this,

Qe The transformation can be considered as a combination
\ of the three transformations

W= tanthl, £ ot 1= v/
where w = u-ip, [ —

ELin, t—=o Lir, 2= xLiy.
The first transform ? : !

ation can be written
1—
w — cos £

- 14cos °
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If we consider the infinite strip botween the lines £ = 0,

£ = }w of the {-plane, we sce that, by writing £ = ¥ 49,
cos { == —izinhy and fw|=1. Thus, as 4 goes from
—co to © slong the line § = m, w describbs tho unit-
gircle onee, By writing { = iy, cos { = cosh % and w is
real. Thus as 4 goes from 40 0 0, 2 goes from —1 60 0;

and as 5 goes from 0 to —co, w retraccs its path from\ N
0 to —1. Thus the strip § =0, { = §m corresponds(te*
the cut-circle a8 illustrated in fig. 7. It is easy to venfy

éh. 1.,
v U #

»

w-plane {-plam} e \;f;w af I‘%ll?ﬂgrary ,orégme
16, 7.

that the interiors correspond. The strip in the ¢-plane
is plainly that hetwe¢én‘the lines e = 0 and =1, As we
have already seenid = /7 transforms the strip in the {-plane
into the regiom\inside the parabola 4BC, #* = 4(1—=x),
with a cut ftoui” the origin to infinity along the negative
real axis, {In fact, as o — 0 the parabola y* = 40*o*—a)
heuomega\rery narrow parabola which is the slit illustrated
in thegplane in fig. 7.

\The transformation w = tan?(}m+/z) represcnts the
, .{egion ingide the parabola ABC on the inside of the unit
~irclo {w| =1 in a one-one correspondence, for the real

axis of the w-planc between —1 and 0 corresponds to the ~

real axis of the z-plane between —oo and 0. 'The cuts in
the z-plane and w-plane are not necded for the direct trans-
formation from the w-plane to the z-plane, but they are
needed for the subsidiary transformations used in order to
show how the boundaries of the various regions correspond.
) E

.
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Bince dw/dz = 7 tan{lm~/2) sue{ 7 y/2) 44, which tends

to a finite non-zero limit as z— 0, the points 3 = 0 and

w =0 are not critical points of the trausiiemation, and
80 the representation is conformal as well ax 2is-one.

§ 24. Combinations of w = z® with Mdabius’ Trans-
formations ¢\

7'\

L. Semicircle on half-plane or circle. ™

N}
N

Consider the transformation \

i, "
w= (Z w)z; (¢ real). AN\ . (D

z+1¢
A\

This is clearly a combination of O

The gecond of these may be \y:l:ﬁ;%c;i >
www_dbl'aulibral'y_pfg}ilz+1
for which it is clegnbhat the circle | 2 | = ¢ corvesponds to
tho imaginary sxis'ef the I-planc | {41 )= {7 1|
”I‘he bound::% of the semicirele in the z-plane 4DCB4
plainly corresponds to 4’D'C'1 A’ in the L-plane, (' being
the poigh™f = —co. The sense of description of the
two bo’?nﬂaries shows that the shaded areas correspond.
\N}}w conglder w= [2: if yp = peid, § = reif, wo have
"\
M p=1r" ¢ =20
) The shaded domain of the
L] <37/2 and so the domain of the w-plane corresponding
to this is 2r<d<3r, which is of course the same a8
0<$ <7, or the upper half of the w-plane.

*
The usa of the remgiy of § 16 is frequently simpler than the
procedura of splitting

H . up the tr . . . enl aod
imaginary parta. P ansformation into its r

»
&
&«

{-plane corresponds to
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Henee the interior of the shaded semicircle of fig. 8
torresponds to the upper half of the w-plane.

e "
f’ -
&
! . . € v A £ &
S S .
£ [] 7NN
‘. 7 O
L) b 4
* vie N
‘1— . o ,'\0“
3 S\
N/
z-plane {plﬂQﬂ

Fia, 8.

t is casy to verify that the uppet\'half of the w-plans
cortesponds to the interior of fhe Fospective semicircles

BAEDS, AECDA, ECBDE bg ‘the “transformations

. . FG N uélbralym(gmc)2
W (;: 'fv z—1ic +ef

Also, by combmm{(&)\mth the transfermation
X i
N\ b= itw’
the tmnsfown@i’ion
I . f{z—ic\k
’\*“\: b (;—Ec) . 222 2z
N T'z—ic I W%
¢ (z —H'c)
\> ’éonformauy represents the interior of the z-semicircle ABODA
on the interior of the unit circle || = 1,

E

II. Wedge or sector on half-plane.
By the transformation

. @

w = zl,"i]’.’ - .
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the aren bounded by the infinite wedge of angle wa with i
veriex ut z =0 and one arm of the angle ulony the positive
x-axis i8 transformed inlo the upper half of the w-plane,

The reader will find this quite easy to verify,

T'he sector cut off from this wedge by an arc of the unit-

circle | 2| = 1 is transformed by (2) into the unit semicircle,
in the upper half of the w-plane. R\
This is also eusy to verify. QO

IIL. Circular crescent or semicirele on ha{f-pfa;néz?
&/

We readily see, from § 18, IV, that the circ?ﬁ;l\ur crescent
with its points at z =@ and z =& and Whose angle is
we cant be transformed into the WedngﬁelltiOI;ed in 11
abuve by S

if the GOHM,&mEhiﬁ@fyﬁ}@mm. Hence the crescent
ean be transformed into thepihalf-plane by

(w — ¢ (z';"')”“ ) . )

2-b

A scmicircle finy be regarded as a particular case of a
crescent in Gwhich o = }. The semicircle of radius unity
and centre)z = 0 lying in the upper half-planc is trans-
formc;el\'in o the first quadrant of the {-plane by

'~f\ X _ 14z

o 1—-2z

™

)

“"he quarter-plane becomes a half-plane by * w = {2 an i

80 the semicircle is transformed into the upper half of the
w-plane by

1—

* See I above.

W= — (1_—!_3)2 . . . (8)
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IV. Secior on wnl cirele,

Congider the sector in the z-plane, shaded in fig. 9.
Let us find the transformation which represents this sector
on a unit circle,

I1c. 8.

By means of (2) the sector is transformeds‘ﬁqﬁé the unit-
semicircle in the upper half of the w-plage’ By means
of (#} we see that this unit semicircle, i pransformed into
the upper half of the ¢-plans by < O

PN .
t == ( +u) > . . . (B
ISwi”
Again, the upper half of !ng;.,é"cf- lane is transformed into
the interior of the unitircle Mg e = 1, by
Ayt
M= e (7}
’:\.." 1
and on combiﬁi@g “those, the transformation which represents
the shaded areq of fig. @ on the unit circle in the {-plane is *
o . +z”a)g
:o\'.‘f (1 _plie -

\;"\,." L= awa— - -+ - ®
Q (i) +

;\’j':' V. By combining w = +/z with a M&bius’ transforma.-
"\ tion we find in a similar way the transformation which

\ represents the z-plane, cut from 0 to co along the postiive
real axis on the unit circle | {| < 1 in tho form
JE B
=Y
£ 24i

* When a = 1, this transformation is the same as (1) of §19.
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VI. Transformations of the cut-plane,
Consider the two transformations

z—a C z—a
= ——— W= -
z—b’ z—h
where @ and b are real and a> 5. By means of tiio firsh

of these, the z-plane, cut along the real axis from P2

to 400 and from z = b to — o0, is transformed igxt’q\the
w-plane cut from w = 0 to w = w0, the cut passingtiifough
the point % = 1 which corresponds to z = oo, ) >y Ineans
of tho second, the z-plane cut from z =& t0 z — b is
transformed into the w-plane cut along\ghy positive real
axis from O to co. The cut in this case does not pass
through w = —1, the point corre-cv,pox@ing t0 2 == 0.

§ 25, Exponential and Logar:it]i.rhic Transformations

Most of the transformaﬁiéjris so far considerad have
been Mobiug’ transformatidns, w = 2@ and combinations
of these two t3pdlr T WHHEY VBl ve that the relation

AN w=oeg* . . Lo (1)

gives rise to twodmportant special transformations.
- If we useQréwe}angula-r coordinates =, y and polar co-
ordinates p, & I the w-planc we get
O p=e, d=y.

Ik(&,\thontal strip of the z-plane bounded by the
linesy = y, and y = y, where | #1—4 | <27 is transformed
m% & wedge-shaped region of tho w-plane, the angle of
athe wedge being o = |fa—bs| =l y3—y,|. The repre-

- senfation is conformal throughout the interior of these
regions since dw/dz is never zero. In particular, if y; = 0,
¥» =, 50 that | ¥a—, | =m, the wedge becomes a half-
plane. The semi-infinite strip —oo<Ce <0, O<y<lm is
readily seen to correspond to unit semicircle in the upper
half of the w-plane.

If | 43—y, |>2m, the wedge obtained covers part of the
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w-plane nuiltiply,  We may in this case make use of the
eut w-plane. if y; =0, y, = 2, the strip of width 2x
in the z-plune norresponds o the w-plane out along the
positive Teal nxis. When |y, —y, | is an integral multiple
of 27 the strip is transformed into a Riemann surface.
Each strip of tho z-plane of breadth 27 corresponds to one
sheet of thie co-sheoted Riemann surface. Ko\

A second apecial transformation is obtained from, (I}
by considering an arbitrary vertical strip bounded \by the
lines & = x,, ¥ = ¥, (¥;<%,). This strip is represented
on & Riemann surface which covers the annglds between
the eonceniric circles [w]=p;,|w}=\py on infinite
rumber of times. If we keep x, constantand let z,—>—c0,
the strip z,< z<z, becomes in the limit the portion of
the z-plaue to the left of the lines = «,, and we obtain
in the w-plane & Riernann surfag,which covers the circle
[w]<p, except at the poink 42 = 0, where it has a
logarithmic branch-point. 3"

The inverse function W™ w.dbraulibrary org.in

. w=Togz . N £

gives, on interchanging the z-plane and w-plane, exactly
the satne transfoemiations as (1).
Tt should\be' remombered that although Logz is an
infinitely wiahy-valued function of z, €* is one-valued.
Sineg 5% = ¢ g2 the transformation w = 2% may be
rt‘gqr@g}}“as a combination of the two transformations

«\\“ w=e!, { =aLlogz.

2 S
N f§ 26. Transfopmé,tions involving Confocal Conics

Yy Consider the transformation

) atb M

2z = (ga—bw+ " . .

N

If w = reif, we get

by .
2x = {(a—b)r—i— ?—j—{]} cos B, 2y = {(a—b)r-— E?—} sin 6,
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and 8o the curves in the z-plane, corresponding to concentrie
circles in the w-plane having the origin for their centre,
are confocal ellipscs, the distance between the fori being
24/(a*—b%). The curves in the z-plane corresponding o
straight lines through the origin in the t-planc sre the
confocal hyperbolas, a result to be expected, since the
two families of curves in each plane must cut orthogonallyg \)
Clearly there is no loss of generality by taking « =L 1}

b =0, and s0 we may consider the transformation N

% = w4 . LY
w \ ¥

a8 typical. Clearly z becomes infinite vavei). w==1{, and
since \

dz__ll 1B\
dw 2\ w2}

the points w = {Elgf_a%ﬁig;&i&cg}%bgiﬂerivative vanishes, are

v PR A
critical points'of the tran rmation. We now have

144
2 = (r +;}\0039, 2y = (r—--l—) sin 8
Y T

A
and on ehm.ma?aug}&, we got the ellipse in the z-plane

" xR 2

N2 ¥

‘\:"'1( e i =t - @
W g\t —{r— -
Y 4 *r) 4( ?‘)

N

corresponding to each of the two circles |w]=r, [w]=1/r

88 7 1, the major semi-axis of the ellipse tends to 1,

“while the minor semi-axis tends to zero. As r-> (), or a8

' r—> 0, both semi-axes tend to infinity. From this it is
plain that the inside ang

the outside of the unit circle in
the w-planc both, correspond to the whole z-plane, cut
along the real axis from —1 tq 1. The unit circle | w ] = 1
itself corresponds to a very narrow ellipse, which is the
eut along the real axis enclosing the eritica] points —1 and 1.
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On solving equntion (2) for w we get
w = z4/(2—1)

and the inverse funetion is a two-valued function of z.
If we choose the lower sign, the transformation

w=z—/(22--1} . . . (4)

transforms the area outside the ellipse (3) conformally idlo
the inside of the circle |w|=r. The lower sign isthe
correct one to seloct, since the point tw == 0 inside the circle
must correspond to the point z = oo ; the other ‘sign of
the square root would make the points w='es, z =
correspond. The region between two confotal ellipses in
the z-plane is transformed into the anmilas” between two
coneentric circles in the w-plane, x\

The function {4) gives e transformelion of the z-plane,
cut along the real axis from —1 talls on the tnterior of the
crele |w} = L. oA

If we take the other ‘ﬁfgjif;—%risllﬁiearyth@iﬂw trans-
Jormation

u;{'%z+\/(zg~—1)

gives a t-ransfomaéc‘\tfv;”of the cul z-plane on fhe outside of
the unit circle |jm] = 1. Tho relation (2} is remarkable
in that it represents the cut z-plane not only on the interior
but also on the exterior of the unit circle {w | = 1.

The .Bﬁé’uity can be removed from this transformation
by replacing the z-plane by & Riemann surface of two
sheefs, each cut from —1 to 1 and joined crossways along
thelout. Then, of courso, the interior of the unit circle
J % | = 1 corresponds to ono sheet and the exterior of the
tinit circle to the other sheet of this Riemann surface.

If r>1, the transformation {2) maps the exterior of
the circle | w | = r, or the interior of the circle |w| = 1/7, on
the exterior of the ellipse (3}. It should he observed,
however, that the dnferior of the ellipse cannot be
represented on the inferior of the unit circle by any of the

¢\

A\



74 FUNCTIONS OF A COMPLEX VARIABLE

elementary transformations so far employed. We may
remark, however, that the upper half of the «!lipse (3)
is represented by (2) on the upper half of an sanular
region cut along the real axis: this last arca, il hence
the semi-ellipse also, can be transformed into a rectangle
by & method similar to that deseribed in §25. The
transformation which maps the énferior of an cliipse on\
a unit cirele involves elliptic functions. -~

'\
§27. The Transformation z — ¢ sin w i s ’
N
From the relation “\
g=-csinw, [creal) ,\) . . (D

o \d
we geb, on equating real and imaginar}ﬁgﬁrtg,

x = ¢sin wcosh v, y =’.p‘eds % sinh 7,

80 that,_whg@‘&bligumg‘g%ggl%thg point z deseribes the

CUTVES :

at Y 9
02??9@3v+cf‘_:siﬁz_v_ L ) - @
which, for diﬁ'c%}t values of v, are confoeal ellipses.
Consider & rectangle in the w-plane bounded by the lines
%= i A= LA For all values of u, cos u is positive ;
hence whieh'y = A, y is positive and = varies from ¢ coshA
to \¢:f§0§hh, that is, the half of the ellipse on the positive
side\of the axis of # is covered. .

AW Let w= —Lr, then y = 0 and # = —c coshv. Hence
B8 v varics from A through zero to — along the side of the
- rectangle, x passes from A’ to the focus H {sec fig. 10)

- and back from H to 4°, :

When v = —X thep z describes the half of the ellipse
on the negative side of the axis of z. When u — 4 then

y =0 and 2= ¢coshv, so that z moves from A to the
focus 8 and back from S to 4.
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Henee the curve in the z-planc corresponding to the
contour of the rectangle in the w-plane is the ellipse with
two slits from the extremities of the major axis each to
the nearer focus, It is easy to see that the two interiors
COLTESPUilG.

N
\']‘S‘fa\f fipraulibrary org.in

Since sin w = cog(%; \ 1), the transformation given by
SN e =ccosw
ean be dealt.’“ﬁth in a similar way. The details are left

to the re&yd:cjg? d
Thg{m}ction inverse to (1),

N w = arc sin (z/c),

Listan infinitely many-valued function of 2. If we use the

) 3

"\“eut plane, the cuts must be from S to infinity along the

positive real axis and from H to infinity along the negative
real axis., The Riemann surface of an infinite number of
sheets in the z-plane, which would secure unique corres-
pondence between every z-point and every w-point, would
have the junetions of its different sheets along the above-
mentioned euts. '
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§ 28. Joukowski’s Aerofoil
L

The transformation

w—xcz (E)K ) . ‘ {1)
w-tke zte

is important in the practical problem of mappm g At
aeroplane-wing profile on a nearly circular curve. U-bhe-
profile has a sharp pm.nt at the trailing edge and ywe write
B = (2—«)m, then B is the angle between the tang ata to
the upper and lower parts of the profile at thisgpenmt. If a
circle is drawn through the point —e¢ in the 2{plano, so that
it just encloses the point z == ¢ and cuts\tle line joining
z= —c and z =0 at 2= ¢+e where ¢/i8'8mall, this circle
is mapped by (1) on a wing- -shaped,, eﬁxve in the w-plane.

A epecial case of (1) When e, k= 2 will now be
discussed in detail.

In practical problems on' the study of the flow of air
round an amﬁmli,bthultbmsﬁapmﬁbn desired is one which
maps the region oufsidethe acrofoil on the region culside

a circle or nearly irbular curve. The special case of
(1) when ¢ = 1, s

\ \\ ' w—2 z—-—] 2 {2)

o\ w+2 \zF+1 ) )
transforms’ & circle in tho z-plane, passing through the
pointn2= -1 and containing the point z =1, into a

sshaped curve in the w- plane, known as J oukowski's
proﬁle
We readily see that (2) is the same as the trans-
formation, already discussed,

w=z+£, L. ®
If C is & circle in the z-plane passing through the point

z = —1, such that the point z = 1 ig within C, the trans-
formation (3) maps the ouiside of & conformally on the
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outside of Joikowski’s profile . The shape of the curve #
can eazily be obiained from the circle ¢ by making the
point z trace out this circle, and adding the vectors z and
1jz. See fig. 11

wwx{? Harauhbl "ary .org.in

We may also considex (2) 83 a combination of the three
transformations “,\

@4 ‘l 2. {+1

N , L=1 =2 e
By the ﬁrat of "i;ls.ese, the circle ¢ is transformed into a
circle I j the t-plane passing through ¢=0. By the
seeond »the circle I'is transformed into a cardioid * in the
{-plane~with cusp at { = 0. The third transformation
thet\reaps the cardioid on the wing-shaped curve F in
he” w-plane. Since z=1 corresponds to ¢= co, the
“\‘wiutside of ' iz mapped on the interior of I The interior
v of the cardioid corresponds to the interior of I. Siace
{ = 1 corresponds to w = oo, the outside of # corresponds

to the inside of the cardioid, and so to the outside of €.

In fig. 11, € is the given circle, ¢" the circle obtained
from € by the transformation 1/z and @ is the unit circle.

* Seo § 21,
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The critical points of (3) are z =1 and z = —1, aud since
the point z = 1 is inside €, the mapping of the outside of
C on the outside of F is conformal.

If the point z==1 is outside €, then the insiic of F
corresponds to the inside of €, and the figure corresponding
to this case is the same as fig. 11 with the circles ¢ and CA
interchanged. 8 \)

§29. Some Important Transformations Ta¥wddted

In Table 1 we tabulate for convenience alshmber of
examples of domains in the z-plane which altn'be wapped
conformally on the interior of the unit cirtle | w |1,

N

TABLE I /N

Q"

Domain in the z-plane Domaln iﬂ.'ﬂle';ﬂ—pltane | o
f—giy— reté. = lf‘l—ig w pe ??5_ Transformation,
www.dbralﬂ—ibrary,crg,m ‘ N
Unit cirele [ 2}<1 | Umit circle | w <1 w=e' z;i
’ iz =
Upper half-plane i‘\ Unit eirele | w |1 w= sl_z
Infinite strip oﬁ\}nim Unit eirele | w | =1 w—1l _ PR
breadth - — gy« oo, w1

e b
Area, outsidethe ellipse | Tnit cirelo [w]sKl | 2z = {a—bw 4+ —

ot ytih: = 1 w
Area Gutsida the para- | Unit cirelo | w <1 2 1y = 4
@vﬁ‘_cos“%ﬂ =1 0] ]“a (w1}
sA‘IQ ] within same para- | Unit cirele | =it w = tan®im/2)
Jbola e s
ABemicirels Unit circle |w|<1 w0 + 2e2
O sty =ch g

P g

/)

Some useful conforma] transformations in which the
domain in the w-plane is naot 5 gircle are given in Table 2.
When the domain in the w.plane is either the upper half-
plane or a semicircle it can of course be transformed into

" & circle by either 2 or 7 of Table 1,
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It is impossible, in the limited space at our disposal,
to discuss all the transformations which are of practical
importance. It is important, however, to mention briefly
the Schwarz-Christoffsl transformation, which has
numerous important applications.

Let a, b, ¢, ... be r points on the real axis in the u,-,;lan&
such that a<b<c< .y and let a, B, v, ... be interior)
angles of a simple closed polygon of = Vertwv‘i 50 that
at+B+y+... = (n—2m. N\

Then the transformation of Schwarz- Chmtofrnl is a
transformation from the w- pl&nc to the z- plane\(ﬁ:huel by

dz g_ N
@:K(w—a) Yo — by lw% ..

It transforms the real axis in the w? plaﬁe into the boundary
of a closed polygon in the z- plane i such a way that the
vertices of the polygon correspond to the points a, &, ¢, ..
and the interior ng ofsthe polyzon are a, Wy eer s
When the pic 3%0%11&]%:@131 0{§ Sn%;emor is maﬁppetl by
this trausformatlon g\ the upper half of tho w-plane.
The nunmber K is a cbnbtant which may be complex.

If we write(X& = AefA, where 4 and A are real, one
vertex of thedpolygon can be mado to correspond to the
point at m.ﬁmhy on the w-axis. If a->—oo we can choose

a
4 to b'\of the form B(—a)” #*1 and since, as a-> —,

O

{{w\—a —-a}"’_l—+ 1, the transformation becomes

dz B
~O o = BeMw—tym Yw—cjr L ..
\
The reader who desires further information about this

important transformation is referred to larger treatises.®

* See e, Copson, Functions of @ Complexr Vuriuble (Oxford,
1935), p. 193 seq.
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EXAMPLES III

1. Prove that, by the transformation
c (z—a z—]—a)
we=-={— 4+ —1,

2\z4a Z—

tvro sote of coaxel cireles are transformed into sets of confoen] A

conics. What region of the w-plane corresponds to  the { ™
inside of the circlo [{z—a)f(z+a)f =1 ? A QO
. (RN &
o Show that by the transformation w = (ﬁ-“ 1); ,
z—

the real axis in the z-plane eorresponds to a c&rdio?d\in tho
w.plane, Indieate the region of the z-plane whieh corres-
ponds to the interior of the cardioid, )

3, If w = — 40 cob 4z, whero e is real, show*t’hkﬁ the rectangle
bonded byz =0, 2 = o, y=0, ¥ = oo,js}e&hfom‘mlly Tepre-
gented on & quarter of the w-plane. Aind a transformation
{ == f(z) which maps this infinite rgttafigle on the sernicircle
HEEY &

4, I w = tan 2, prove th&&z:é?;.vv_d_braulibral'y.ot‘g.ill

wt vl 2u cob 2x—1 = (3; Yu? byt —2p coth 2y+1 = 0.

Henee show thab thgg‘ﬁt}ip —in<<aln corresponds to the

whole w-plane. Téobtain a Riemann surface in the w-plana

40 as to socure uhique correspondence betwech every w-point

and every z—po'i'rixﬁ;fshow that tho w-plane must be cut along

the imagina:y}uﬁ:is from i to oo and from —¢ to —¢0.
Investifae w = tan 2 as a combination of

& . .
AT =g, L= .
o5, Find the curves in the z-plane corresponding to | w |=1
7R
.7
A\ 2z —'2)
\ YeIIve

f. Show that w = 22/(1—2%) maps two of the four domains,
into which the eircles |z—1|= +2, |z24+1] = +/2 divide
the z-plane, conformally on |w! < L

7. Prove that, if B822—Zwz+1=20, the annulus
13|zl is mapped conforinally on the interior of the

F
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ellipse w?+40? = 4 cut along the real axis betwesn s foed,
Digeuss what corresponda in the w-plane to bl curves
{i)]z] =r (ii)argz = a.

8. Tind the transformation which maps thoe out e of the

ellipse {z—2 [4+] 242 ] = 100/7 an tha circle |w |-, 1.

%, Bhow that w = —3{z+1/2) maps the upper Lalf of the
cirele |z |<<1 on the upper half of the w-plous. Ao Wlmii‘\
points of the z-plang is the linear magnifiention cinal to.dg
At what points is the rotation equal to Lz ? Irove Shas

the magmﬁmtlon is greater than unity throughost trl(‘ ‘nicrior
= 1 in the uppor hall-plangd)

10. By considering the suceossivo by w\" nrmatwns
= —3z+1/2), w=1}{* prove that w = %Y W-} z*1* maps
the upper half of the circle |2 |<t1 on the w¥phne, cat slong
the positive real axis, so that the p(nnts -4 ‘—\ , 1, i correspond
to w = 0, 1, @ respectively.

What points of the w-plane corrr\aprmd toz = 217

11. Bhow that by w = e7zi2 an effulangular spiral in the
w-plano corresponds o a straiglipdite in the z-plane.

12. Discuss the tr msforma} 1on
W W dbrauilbrary org.in

{z—a)J-v'(z—ﬁﬂ
= 1
¥ TR I

showing that the lines « = const., » = const. correspond to
sets of confoeal (,%TIC:: with fociat z = q, 7 =

13. Show tha.t 2w = Jog{{l+=)/(1 —=z3} rr‘prr sents [z <1
on the strig ofthe w. plane —iw<v<$a.

14. WW that i = log{+v/{z/a}—1} rcprescnts the strip
v = 0,0 ©, 4 = —5, 4 = x on the interior of the cardioid
7 =gl +cos §) in the z-plane cut along the real axis from
tha ptox = a.

'\., "% 15. Show that, if ¢ is Teal,

o \ i ..
\ T gt
\ Z-fe
conformally transforms the strip o = —e0, ¥ = o, u =0,

© = m, into the circle |z | < ¢,
16. 8how that, by the relation w? = Ite?, the lines

¥ = const, are t.rans;formad into & series of confocal lomniscates
{Cassini’s ovals) in the - -plane,
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If a>1 and 2%u’+u?—1) = aw?, show that the interior
of the circle |z { 1 iz transformed mbo the iuterior of the
Caseini’s oval pp’ = o, where p and p’ are the distances of a
point from the foei {1, 0} and {1, O}

17. If z = z-+iy, prove that the inside of the parabela
y? = 4c¥(z-+o?) is mapped on the upper half of the w-plane by R
KO

. TR
w ==t cosh -

-

I8. Show that the travsformation 75
z 1 e, 20 .\ g
o (l—w) v
transforms the inside of the circle | |'=='—’:\}"With two semi-
cireular indentations, of centres 1 ands \vI drawn =0 as to
exclude these points from the clrculan area and boundary,
into the apnulus befwesn two cireles \in the z-plans, of eentre
the origin and radii ce?, ce—2, W‘ltha, -'-;mgle slit along the real axis.

19. If 0o B2, show 16H%ral.illl:irary org.in

w = (ze""“)g’ﬁ (f—a)

maps tho region a<a}g z<z 8 on the w-plano cut along tho
positive real ax1\ Hence find the transformation w = f{z}
which maps the circular scebor e=targz<t f, |#|<Cl, on the
cirvele | w |<< RS
3 3
20, Usé tlb successive teansformations
x'\n'
< 14-¢ r—i

Yy Iyt = ¢ i == = §2 E= pa—
\gw;: (z+1)wt, 8 =&, 1—& r W e

.ﬁcf’oform the single transformation w = f{z} which maps the
,\I';\’sﬁrip —{sSwstd, ¥20 of the z-pluno on {w |=1.
s . \ —1
\ 21. Use the transformations { = +/z,¢t = sin §af,w = i_—{—l’
to show that

<;m dmyz—1

T osin dwalz-b K%

maps the inside of the parabola r — 2/(1-4-cos 8) in the z-plane,
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cut from the foeus (z = 0) to tho point z = — oo, ou the unit
circle in the w-plane cut from w =0 to w = 1.

22. Find the equations of the eurves in the z-plune which
eorrespond to constant values of u and v if z = w-| e®. What
corrosponds to the lines v =0, v = 5§ Sketeh some of

the curves » = const. for values of » between —m and o, ¢
23. Bhow that the transformation _ \' N
wfa = i sinh }(z—iB)/cosh 4z +iB) \

el
77
" R

transforms one of the regions bounded by tho'%’grfahégonal
circles |w| = a and | w—a coses 8| = acot B mt\o theo infinite
strip O=y=<Ilw. v
24. If w = tanhz, show that the \lines =z = const.,
y = vonst., correspond to coaxal eireleSoirg\the w-plane.
Prove that this transformation giaps the strip O<y<jn
conformally on the upper-half of tiéw¥¢-plane.
25. Prove that, if 0<e< 1, the transformation
K
www . dbraulibrasy @gln

transforms the unit ciféle in the z-plane into the unit circle,
taken twice, in thgw}plane, and the inside of the first circle
into the inside, Q»%en' twice, of the second.
26. Proveythat, if ¢>0, A0,
‘ (Z—i-l)-i-‘l .
N = 2a4/{z4-1 Io*l/w-— -
O Vizt+ D+ ¢ Jern—1 T

m g."ti}ie upper-half of the z-plane on the pesitive gquadrant
ofo\ O w-plane with a shit along the line v = =, u zh, where
M= htir when 2 = 1y, (Ree p. 80.)

S

,,\ v 27. Bhow that by the transformation

& 1
T =y u g (T—w)

the uppor half of the w-plane can be mapped on the interior
of a square, the length of a side of which is

¥
J. v{coses @) dg.
0
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=56 Complex Integration “:":'«.

The development of the theory of funotions of a
complex variable follows quite a different’ling from that
of functions of a real variable. In tholdtter theory,
having discussed functions which posgess a derivative,
we procced to consider the more speetal class of functions
which possess derivatives of the\kéeond order; then,
from among those functions wiiich possess derivatives of
all orders, we select those ghich can be cxpanded in a
power series by Taylor&su@elmmﬁ;@y%}lgﬂ#x variable
theory, on the other hand, we begin' by dealing with
rogular functions, afid, by virtuo of the definition of
regularity, the cldss of functions iz so rostricted that a
function W}.u’ch\ig\egular in a region possesses derivatives
of all orders &bevery point of the region and the function
can be gxpsufded in a power serics about any interior
point of thé region.

Binfellowing Cauchy’s development of complex variable
theory, cverything depends upon the complex integral
aleulus, and, in order to prove that a regular function

__{" possesses a second derivative, we must first of all express

N\
\

\ 3

f(z} as a contour integral round any closed contour
surrounding the point 2.

Tn order to develop the subject further we must now
consider the definition of the integral of a function of a
complex variable along a plane curve.

The equations z = ¢(t), ¥ = (t}, whore a<t<p, define
the arc of a plane curve. If we gubdivide the interval

85

WA
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{a, B) by the points a =&, £y, &y, «.u, t,, ..., £, —= f3, then
the points on the curve corresponding to these values.
of ¢ may be denoted by Py, P, #, .. P,. The
length of the polygomal Line PoP...P,, measueed by
L]
2z~ )y, — 4.}, depends on the particular
rel N\
mode of sabdivision of (a, 8). We call this summu.{.i@?".\
the length of an inseribed polygon. If the are be sitciy it
the lengths of all the inscribed polygons have ¥nite
upper bound A, the curve is said 1o be rectiﬁab]e:’n.ml Als
the length of the curve. e

It can be shown that tho mnecessaryOand suflicient
condition that the arc should bo rectifigble is that the
functions ¢{2), ¥(£) should be of bounded, derintion in (o, 8).
If ¢'(2) and o'(t) are continuous, it pansbe proved that the
curve defined by @ = ¢(1), ¥y = ﬁb{t);agtéﬁ, is rectifisble
and that its length sis given by

g RRER I

If we consider an ’Qr(;\of a Jordan curve whose cquation
is 2 = (t)+i(if wlere axtsf, we define a regular
arc of a Jordgh, curve to be one for which &' (£), H'(L) are
continuoug i<t 8. Trom the above thegrems we
see that ‘gl\xe“ I‘engt-h_of this regulur Jordan are is

g, £/

S

a f
NS [P v oo

By a contour we mean a continuous Jordan curve

\

) “Consisting of a finite number of regular arcs. Clearly &

contour is reetifiable,

We now define the integral of a function of a complex
variable 2 along a regular are I defined by z == ¢(th
y = $(t), a<t<<B.

* For proofs and further details, see P.A, p. 205 seq., ur G.T,
p. 113,
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Let f(z) bo any complex function of 2, continucus along
L, a regula.r arc with end-points 4 and B, and write
flz) = u(z, y) Hiv{e,y). Let 2, 2, -0 2q be pointa on
L. z, being 4 and z, boing B. Consuler the sum

r{iﬂ;r)(zr_zr4l)}s . . . (I)

. e . &\
where £, is any point in the arc 2,_¢, 2, If {; = &t
we write u, = u(éy, 1) ve = v(§,, 7., and (1) may be
l".‘

written A\
Z{ 1 (Y — 2 ":yf—l)}s“\\\'
r=1 \ 4
Now, by the mean-value thoorem, - P \,

Tr—Tp 1 = §6( r “‘{6 r—l) R v&t -1 56' r]s
Ye—¥r1 = Pit,) —yfilty_q) —‘Ié'_tr 0l {r:'),

whete {,_y T,y by STy <‘t,~; Hence the sum may be:
writlen

"

AT d:bl auhbral y.org.in

Z[ r‘!‘wrl{(é (“'r)‘{"i'ﬁ 7o et 1)} . @

Since all the funqt" \n«, concerned are continuous, and
therefore umfor?@y continuous, we can, given ¢, find 8(e)
80 that O

WO () —ul@n v )] <e
for ever?v”,' provided that each | £,—t, ; [<3. Also
N n
N E{E(tr_tr—-l)} = e(t,—1y).

.

"\It follows that, as ¢ and § tend to zero,

~O
\V Z‘{ufqb’(fr}{f‘r—‘wl}}

rel
tends to the same limit as _ /;%C
. (2, ) ) —te_ )b \
=1 . )
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that is to the Iimit

fu{qé HE Bt

Smllla.r]y the other terms of (2) tend to limits, and we find
that the whole sum tends to the limit o
¢\,

8 <O
[ termgarone . O

4 e :
< 3

This limit (3) is taken as the definition of th@ co;nplex
integral of f(z) along the regular arc L, and\tys written

J(dz. Y,
5L
The integral of f(z) along a contoux d\comﬁqtmg of a finite

number of regular ares L., is given\by

flajdz =< "[ fla)ydz.
WA kﬁ‘aullbralybr‘g i
%31, An Upper Bounds for a Contour Integral
L. If f(2) is contifalous on a contour L, of length I, on
which it sazesﬁe.s the whequality | f(2) | <M, then

S

It suﬂiceﬁ\bo prove this theorcm for a regulur arc L.
Since ke’ modulus of any integral of a function of a

:\;\m‘lable cannot exceed the integral of the modulus
of‘\that function, we have

z| st ML

(z)dz “ =

[t viganal,

B
< [“mgop-pora,

= Ml
‘If:C' is a closed contour we make the convention that the
posilive sense of description of the contour is anti-clockwise.
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_ §82. Cauchy’s Theorem

The elcmentary proof of Cauchy’s theorem, which
depends on the two-dimensional form of Green's theorem,
requircs the assumption of the continuity of f'(z). We
first give a proof with this assumption, buf, on account
of the fundamental importance of Canchy’s theorem in >y
complex variable theory, we shall also prove the theorem\
under less restrictive assumptions. \

1T, The elementary proof of Cauchy’s theorem. :‘ :

If f(z) is a regular function and if f'(z} 8 Eb}tmuous
at each pomt within and on @ closed contour C,Jhed

~NY;
ffzdz:(). \s\. . (1

Let D be the closed domain whlclr conalsts of all pointa
within and on . Then by §c30“(3 we can write the

integral (1) as a comhlmmnd}frm}wgﬂgtﬁgmls
f_f z)dz =J. zgd:v—@dy)—i—tf {vdx+udy).

We transform eack?ff these mtegrals by Green’s theorem,*
which statcs that, ), 8Q/6x, BP[8y are all
continuous fmletions of z a.nd J m D then

AG f\(PdHQd“{ .” (w dy)d =ag-

Su}ce f/{7) = Uo1ivz = vy—it,, and, by hypothesis,
f\( 2s contmuous in D, the conditions of Green’s theorem
#are satisfied and so

=[] (B ] B
=0,

by virtue of the Cauchy-Riemann equations.
* Ses P.A., pp. 2001, or G.L, p. 54
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It was first shown by Goursut (hat it i3 unneecsusry to
assume the comfinuity of f/(z) and that Cauchy’s theorem
holds if we only assume that f'(z) exists at all points within
and on ¢, Tn fact the continuity of f'(z), anl inidoed its
differentiability, are consequences of Cauchy’s theorem.

Second proof of Cauchy’s theorem.

If fiz) is regular at all poinis within and on the closbd)
contour C then O

f . f(2)dz = 0.

The integral certainly exists, for a regulan function f(z)
is continuous and a continuous functioh®is integrable.
We observe also that, if we construct a’ uétwork of sauares,
by lines parallel to the axes of z agd Y, having the contour
C as outer houndary, then O isf divided into a network
of meshes, cither squares or pards‘of squares, such thab

www,d.fraﬂ%é‘gri?%\j?inf(z}dz
oL ¥ ’
where ¢ denotes t:heﬁ)ounda.ry of a mesh deseribed in the

saple sense as %C
If 2, lies inside a square contour & of side @, then

£;‘}:’x‘j‘% ] jdz] i<4\/2aﬂ == 4+/2({Area of ),

This fbllows at once from § 31, for | z—2, |[<<a+/2 and the

c

lén h of the contour 8 is 4a.
8 We now prove two lemmas,

O
"N 4

Lemma }. IfC is a closed contour,f dz =0,| 2dz=0.
C ¢

These rcsults both follow from the definition of the
integral, for :

n
jcdz = lim El{(zr—zr..ﬂ-l} =0, as max )z, —2,_, |- 0.
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Also '
-
J szz = lim E{zr(zr_zf—i)} = lim E{Zr—-l(zr”zr—l)}

— lim 2z 2oz} = b lim Sl )
= 0.

Lemma 2. Goursat’s Lomroa.  Given e, then, by suilable /A
2

transversals, we can divide the tnterior of C into a finilé
number of meshes, either complete squares or paris of
squares, such that, within each mesh, there is a pdihh 2,
such that " :

2\
[z} —fze) = frz—z) Feyl 2=z b)) - (1)

for all values of z in the mesh, where | e, |8

Suppose the lemma ig falso ; then,however the interior
of O iy subdivided, thore will be atNeast one mesh for
which (1) is untrue. We shall ghow that this necessarily
implics the existence of a point within or on € at which
f(z) is not; differentiable.™ wydBraulibrary.org.in

Enclose € in a large square I, of area 4, and apply
the process of repeated quadrisection. When I' is
quadrisected there 153}15 least one of the four quarters of
I for which (1) degs 1ot hold. Let I'y be the one chosen.
Quadrisect I';,fehoose one quarter of [, and go on. We
thus obtain & tinending sequence of squares I'y, Iy, ...,
Iy o & ij contained in the preceding, for which the
lemma,ig thtrue. Thesc squares determine a limit-point £,
and ,Q\'is ‘clear that { must lie within C.

\Sirice f(z) is differentiable at {,

&) 10 —FD =P (D= D+eg | 2=L

e’

where, for sufficiently small values of |z--{], lef[<e.
Now all the I',, from one particular one onwards, lic within
a circle, of contre {, for which |z—{| is so small that
| g [=ce. This gives a contradiction, for by taking { to
be z,, (1) is satisfied. 'This proves Goursat’s lemma.

Q
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Proof of the theorem. Some of the meshes y oblained
by the subdivision of the interior of ¢ will be squares,
others will be irregular, since we aroc not concerned with
the exterior of C.

Integrate (1) round the boundary of each mesh., By
virtue of lemma 1, we get

.|. f(2)dz =.|. ey |2—20 | d2; O
¥ Y

and zo, by addition,

whereo

fleydz = X ey | 2—2, | 42y )
i ¥ 0 |4
<&

L
o

If o is not o aemplbe-foiprg, divide it into two parts,

y, consisting of straight piedcs, y, consisting of parts of 0.
Since | e |<e, ~

g"\\
pX J‘X&v‘{'z—zo ] dz]

N

4 being the’area of the large square I' surrounding 0.
Also, the\shm of the lengths of the porfions y, cannot
exceedhihe length ! of the rectifiable curve C, and so
O\ i
..\
N Z\J eplz—zy ]| dz|
b ]

e

n\ “; R
./ Where Kis the length of the diagonal of I', since | z—2, | <K

We deduce that
\ J. flz)dz
¢

where B is a constant, and, since ¢ is arbitrary, the theorem
iz proved,

< € . 44/24,

< Kle,

< Be,
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§ 33, Cauchy’s Integral, and the Derivatives of a
" Regular Function
By means of Cauchy’s integral we can express the

value of a regular function f(z) at any point within a closed
contour ¢ as a contour integral round C.

IIL. If fiz) is regular within and on & closed contour Uy \

and if {bea pomt within C, then £\

N/

cz'

o~'

Deseribe about z = £ & small circle y of raﬂms § lying
entirely witkin C. In the region betwe{n“ ¢ and y the

“\ Fra. 12.

o

function ¢{z) = a)f(z-é is regular. By making a
eross-cut Jommg\ ny point of ¥ to any pomt of ¢ we
form a closed gentour I’ within which ¢(z) is regular, 80

that, by Cauchy 8 theorem,

\~\ J e =

«\ 'In traversing the contour I’ in the positive (eou.nter-
\c'lockmse) gense, the cross-cut is traversed twice, once in
each sense, and so it follows that

e [ e -
¢ Y
Now

1 11 flzid J(1)de ﬂz)—f(i')
.["i’{} 2myz-—f Efrayz §+2my g—{

83)]

Q.
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Now on y, z—{ = 8¢if, and so the first of the iwo
terma on the right becomes

f(O) {27 8ie 0D
%JO 5ai0 = f(g)

and, by theorem T, the modulus of second term on e«

right of (2) cannot exceed e\
N/

L 3
s

1 £
— max | f(z)—f1{) ] . 223, A
9md D
Y (v
NS
Since f{z) is continuous at z = { this explession tends to
zero as 8— 0 : this proves the theorcms\J
The next theorem shows how, &o0“find the value of
f/({) a8 a contour infegral. PNY;

L
o

VIV If f(2) is regular ina@domain D, its derivative s

given by www,dbraulj]gnfg{j;:f 0 ‘g.i.?{ y
B\ iz
TR= _.ro (z— L’
\

2o
where C 18 anqqzéiwfple closed condowr in D surrounding the
point z = L\

We ki, by 1L,

SUER - 1 71 1 1
N 1 f(z) Rf(z) ]
N = - L - o, .
\\: v 2mi J.G {(2—9}2 + (z— )Xz —L—h)) ?
1 Fl)dz L

2t J g (2 — ()

If we now prove that |7} 0 as {A [ 0, the Teqm'red
result is established. Since f(z) is regular in and on €
it is bounded, so that |f(z) |<<M on ¢, Let d be the
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lower bonnd of the distango of { from €1 suppose A chosen
a0 rmall that | A [<id, then

I h 1 M

27 4234 ?
where £ is the length of O. It is now clear that the term
on the right tends to zcro as | & |- 0.

EARS

o AN
V. If f(z) is regular in a domain D, then f(z) has, qtf“*’

every pamz Z of D, derivatives of all orders, their mlm

being given by “'\ N
. nl flz)lz ¢
g = T 2] o (2= DY \::’}\
If we assume the theorom prov(,d. Mor n=m and
consider the expression \'v
fom §—|—k _ffm)();)
h u.
we can readily prove that, %}%?&ﬁaﬁ -y org.in
(m—-—] f{a)di_ s
l\\ gJ‘n’T_
and the proof th t\I‘I’| tends to zero as | b |— 0 follows the
same lmes as m 1¥. The details are left to the reader.

Jk‘/§ 34 Taylor’is Theorem

v I~\Tff is regular in | z—a |<p, and if [ is o point

auck\ it | {—a | = r(<p) then
z\f:" f(g EEI C a
Owwhere a, == [ a)fn .

Let € be a circle of radius p’, centre z =g, where

r<p’< p, and consirder tho identity
I 1 [—u {—ajn-t {—a)yr 1
Tyt (L—ar

e e T g Tt

¥ 4

N
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Multiply each term by f(z)/2mi and integrate round O
we clearly obtain

in— ]}(
f(g) = f([l)ﬁ—f’(a.}{;—Q) + o +{?1 g a‘ i } I‘m
where {
R, — (E__.Cf.)ff _ JEdE O\
ot ) oz aprz—10) N\
This is Taylor’s theorem with remainder. \ 7

Since | f(z) | <ZM on € we readily sec that ~,"x:".

4] | 4 \~'
Byl < g0 s = K ()
27 p'(p' —r) v
N7

where K is a constant independent/Gf™n. Since r<p’ we
see that | R, |- 0 as n—>co. x\‘

It therefore follows that uhp. gerios Z’a {{—a)™ is com-

0

vergent and has f({) as 1ts.sum function. If f{z) is regular

in the wh()}e\*z\z\iﬂ@f@uw%mmmwh is valid for all {.
Corollary. If Jf{8)| Rhas a mazimum M{r] on

j{—a|=r<p then"{\fa = ") (a)/n ), we have the inequality

O,
N n Fh
For, 1fC' be thc circle | z—a | = » we have

= oy
I prHL A

.,[&}TH flz)dz 1Mo, M)

Zm o [z—ayrtt

: - &ﬂ -
i\ - '\_,,§( 35. The Theorems of Liouville and Laurent

VII. Liouville's Theorem. If f(z) s regulur in the

whole z-plane and if | f(z) | <K for all values of 2z, then
J(z) must be @ constant,

Let 2, z, be any two points and € a circle of centre 2
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nd the radius p=2 'z —2, |, so that, when z is on G,

z—2, | 2ip. By 1L
1 1 1 \
He e = 5 | (T — ) e

o that
]- = zl ZB|K \
2y < = 0 £
)fiea) | = . j a-A A

(2,—2,) flz.d2
(z_'zl)(Z—'~2)

K
:2|zl~—22l—5. \,‘,’S

ﬂccp 2, and 2, fixed and make p >0, then it follghgs that
= f(z); in other words, f{z) is a constant,

VIII Laurcnt’s Theorem. LetCyand ¢ Q\éé Awo circles of

entre o with radii p, and ps (pa<<p1); theah3f f(2) be regular
n the circles and wetkm the annulus between O, and Cy,

f(0) (\1,\) dﬁ%bﬂggar‘y org.in

r being any point of the aﬂ(mlua The eocfficients a, and
), are given by K ,

«C
) P L
G

"7 2w g B T = om

2

By makmga cross-cut joining any point of £ to any
point of Cg,\we I‘B&dlly see that

f adz 1 [z

@

\ M
g}}ﬁéidar the two identitica
LI C a (E—a)yrt  ({—a)* 1
z—{ 22— (z—~a} et (z—a)* + z_ay 2—{
At ooy | oo 1
=ttt T e e

G
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Then it follows that
1 flzwlz

|
-

= AT
i J o, 72— —gua,{é ayr =P,
1 fizids n , .
- i =Y )t L6, 'Q
27 ) g, z2—1 rél b {{—a) 40y,

where Oy
N
Goan) gl Sy Y

P” = D] yH K ¢ :S!'“"_ -
2mi [} o (z—a)™{z—1{ C!(‘)"’?t“) YLz -

' 4
. + . . ™
Now P, is precisely the same remainders asyin Toylor's
theorem and we can prove, in the sawmeNWly as in VI,

_
)!Qﬂ_

UT'};

that | P, |— 0 as n—c0. PNY
Also we have "

1

|Qn]=2ﬂ_

e\ @ QT (e M f'
ar—e) =8 T2 \ )] r—p, r '

where rw}n{d-bmhlmdrﬂ,zj@i;gngﬂf *on (. Sinve py<n,
it follows that | Q, | 0 a®n—> 0.
If, therefore, wo Q‘it-e

LOAD = Al (0,

where [{IP5S ay(f-a)r and fd) = 2 bu(f—r)m e
NS ¢

see thatyf(d} converges for p,<i| L—a [<py.

Tt"a¥o follows that f,(Z) is regular and converges for
| %ﬁk] <py and that f,({) is regular and converges for
“\‘i’i,—a =

\
\/ 36. Zeros and Singularities

I f (z) is regular within a given domain D, we have seefl
that it can be expanded in a Taylor series about any
point z =a of D and

f(z) = 2 a’n(z _a)!’l.
0
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Hag=0= ... =8pu1=0 08, =0, tho first term in
the Taylor expangion is a,(z—a)™ In this case f(z} is
said to have a zero of order m at 2 = a.

A singularity of a fanction f(z) is & point ab which
the function ceases to be regular.

If f(z) is regular within a domain D, except at the potni
2 «= a, which is an isolated singularity of f{z), then we cangs\

. - - & N
draw two concentric circles of centre @, both lying within, ™
D. Tho radius of the smaller circle p, may be as small
as we please, and the radius p, of the larger cirele{ofYany
longth, subject to the restriction that the cirele Meghwholly
within D. In the annulus betwecn theseNtwo circles,
f(z) has a Laurent expansion of the form

[rd] kel X.\ 4
Jlz)=2% a{z—a)t-+2 b,l(\‘(#a)—“.
i} KhY 3

The second term on the right is Qaﬂéd the principal part
of f(z) at z = a. N\
1t may happen that !\)‘ﬂqa} bgl;ljlll% %rﬁé}: bty .- = 0.

In this case the principal part CcOnsists & @dfte numbcer
of terms
by o e b
T G—a) +.+ —a

N

and the singwlatity at z = a is called a pole of order m
of {(z) and\the coefficient b;, which may in certain cases
be zero/is called the residue of f(z} at the pole z = a.
If ﬂg"ﬁéie be of order one, b, = lim{(z—a)f(z)}.

"\ -

k4
B s If the principal part is an infinite scries, the singularity

& 38 an isolated essentinl singularity.

) (1) If z == a is a zero of order m of f(z}, we now prove
that this zero is isolated : in other words, there ewisls @
neighbourhood of the point z = a which conlains no other
zero of f(2).

Clearly we can write f(z) = (z—a)™}{z), where P(z) i8
regular in jz—al|<p and ¢(a} *+ 0, since $(a) = @m»

\



100 EUNCTIONS OF A COMPLEX VARIABLE

Write ¢(¢) = 2¢, then, since $(z) I8 continuons, thore
esists a region |z—a <8 in which lb(z)—dla) | < fel-

Hence
|z} | = [{] )| —| $(z) —dla)}] >l e |

where | 2—a | <8, and so ¢(z) does not vanish in lz—a (<8,

(2) If z = a is a pole of order m of f(z) it follows, from.Jy
the definition of a pole by means of Laurent’s theofent, -
that poles are isolaied, for, the small circle, of eent{@'jg = a
and radius p,, encloses the only singularity of fiz) within
the domain I) which contains the annulus fetWeen the
two circles of radii p, and p,. ’

(3) If ftz) has a pole at z =4, then Jif(e} | >0 as 2—> @
in any manner. For, if the pole be offorder m,

fi2) = 2—a) ™bptbu-rlz—o}.. :-E—Ib;&z'—a)”‘_l—l—ga"(z-—a)" my
and, since b, + 0, we may write  f(z) = (z—a)"™h(2),
where (2} iniaERi bRkl afid s and $(@) = b { O).
Hence, by (1), we can find & neighbourhood | z—a |<D
of the pole in Whic}{{‘t,lt{z) |>% | b |, from which it follows
that )

@ | > 3| bl z—a |
Hence | f(z)} o a8 z— @ n any manner.
(4) Zimt points of zeros and poles.
Lot@y, @y, ..-s By ... De 2 sequence of zeros of a funclion
which is regular in a domain D. Suppose that these

f
%

_zoros have a limit point a which is an interior point of D.
~Hince f(z) is a continuous function, having zeros as near

as wo please {0 a, f{a) must be zero, Now z=a cannob
be a zcro of f(2), since we have proved in (1) that zeros
are isolated. Henee fiz) must be identically zero.

If f(z) is not identically zero in D, then z = a must
be a singularity of f(z), The singularity is isolated, bub
it is not a pole, since | f(z) | doos not tend to infinity 88
7> a in any manner. Hence a limit point of zeros must
be an isolated essential singularity of f(z).
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If f(z) be regular, except at a seb of points which are
singularities 5, g «i0r Gy +nos infinite in number, and
having a limit point y in D, then y must be a singularity
of f(z), since f(z) i8 anbounded in the neighbourhood of y.
Since y is not isolated it eannct be a pole. We call such

a singularity a non-isolated essential singularity.

Examples. sin 1jz has an isolated essential singularity™)
at z— 0. Tt is the limit point of tho zeros, # = linm. (n = &1,
42,..). tan l/z has poles at the points z = 2/nm, (1, =:’~‘:i;1,
33, ...}, and so the limit point of the poles, z = 0yi8\a non-
isolated essential singularity. S

Note on the region of convergence of a Tagicr Series.
If f(2) be a function which is rogular, g&ept at a number
of isolated singularities abt finite points of the z-piane,

then we can expand f(z) in a'Ta;yI'or gories 2 @ (z—a)"
&\ 0

ahout any assigned point 2,5 @, and the radins of con-
vergonce p of this power sc jes will be the distance from
z = a to the nearest sﬁlﬁgﬂar}’c}f BT Yetié ) is clearly
regular in | z—a ]<g§1and cannot be regular in any circle
of centro @ whoge fadius exceeds p.

We sec thab.the radius of convergence of a power
series dependS'upon the extent of the region within which
the sum-fulotion is regular, and it may be controlled by
the e;;is@eﬁce of singularities which do not necessarily
lie on~the real axis,

~Hwe consider the real function 1j(1—=), the binomial
\expansion leads to
O 1 2
\\3.. l—x_1+x+x . . . B

the serics being convergent if | » |<1  This seems quite

natural, since the sum-function has a singularity at # = L.
However, on considering the function 1/{(14=%), we have
1

el . - O
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and the series is again convergent only if ja[<I1; but
if we regard 171427 as a function of the real variable x
thero is nothing in the naturc of the function to sumrest
the restriclion of its range of convergence to |o =1
If, however, we consider 1j{1-12%), where z i3 conijpilex,
the restriction on the region of convergener is av coce
evident, since If{1+42%) has singularilies at z = =, andiy
the radius of convergence of the series (2), if z is comnilex,
ig the distance of the origin from the nearest mnfru,mmt;y
and this iz plainly unity.
s N
37. The Point at Inflnity v
In complex variable theory we hayghsten thst it is
convenient to regard infinity as a fmgle point. ‘The
behaviour of f{z) “at infinity 7 i .CQﬁsulcrui by 1.11!\311g
the substitution z =1/ and exammmg FjLy at {==0.
We say that f{z) is regular, ops Tias a sn:nple pole or haa
an essentml sm ru]a.ritg atp .mﬁnlty accordmo as fl1jE)
has the corteSpotaing proparty Bty =

We lmow that if f{X}¢} has a pole of order mat { =10,
near { = O we havesy 2\

sy Eaﬂaw ;

and so, nqatnz = <0,

gl

& C”‘ ’

:\\"\ Ji=) :ﬂfoaﬂz*"—l—blz +-bgz? 4 by 2™

TFhus, when f(z} has a pole of order m at infinity, the

Oprincipal part of f(z) at infinity is the finite series in

\‘:

ascending powers of z.

Since

z? z5
smz._z—B_T_l,. R

the function S_l'n:z has an jsolated essential singularity at
infinity, the principal part at infinity being an infinite series.
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§ 38. Rational Functions

Theorem. If a single-valued function [i2) kas 1o essential
singularities either in the finite pari of the plane or at nfinity,
then f(z) is a rational function.

Since tho point at infinity is not an essential singularity
of f(z), we can surround it by a region in which F(z) elther
is regnlar or has the point ab infinity as its only singularity )
That iz, we can draw & circle O, with centre the arigin,
such that the point at infinity is the only sing:sﬂarity
outside . Thero canonly bea finite number of siﬁgt[ thrities
within ¢, since poles are isolated singulariﬁiég%&' Suppose
that the poles inside C' are at ag, g -+ oo\ Jhe principal

part at a, may be written O
x’\('
b1 bos '\ D s
el P R P

a, being supposed to be a pglél of order m. The principal

art at nfinity is of the form
p ! 1wy wW.dbraulibra{y,org,jn

Blz—la}j,’a‘zz—i— v FB2

Now consider thg:..f{ﬁlction

{5 bus )
2) = flR) S22 —— F e — (Bt B#).
) = 16 =2 B )
The f}m’(:t\.i(;n $(z) is plainly regular everywhere in the plane,
even & “infinity : hence ¢z} ia pounded for all 2z, and so,
Bg(LiouviHe’s theorem, ¢p(z} is a constant. Henee

)\ m by b )

N = e + — 12 k
o)X fiz} O—ti{z—a, + + e +Bz ..+ B
vV and so f(z) is & rational function of z.

o §39. Analytic Continuation

Supposo that fi(2) and fyfz) arc functions regular in
domains Dy and D, respectively and that D, and D, bave
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a common part, throughout which f,(z) = fy(z), then we
regard the aggregate of values of fi(z) and fu(z) at points
interior to D, or D, as a single rognlar function é(z).
Thus ¢(z) is regular in 4 = D4 Dy and $(z) = fy(2) in
D, and ¢(z) = fy(z) in D,. Tho function fy(z) may be
regarded as extending tho domain in which f,{z) is defined,
and it is called an analytic continuation of f,(z). ¢\
The standard method of continuation is the mothofl\of
power series which we now briefly describe. A\
Let P be the point z,, in the neighbourhood;of which
f(z) is regular, then, by Taylor’s theorer, webal expand
f(z) in a series of ascending powers of z—zg the’ cocficicnts
in which involve the successive derivatives of f(z) at 2z
If 8 be the singularity of f(z) which i&’ fearcst to P, then
the Taylor expansion is valid W’it].:lin'% circle of centre P
and radius PS. Now choose afiy) point P, within the
eircle of convergence not on the'line PS. Wo can find
the values of fﬁ}] and all jteiderivatives at Py, from the
gerios, by Tepes P YIRS YA differentiation, and 50
we can form the Tayler series for f(z) with P, as origin,
and this series will define a function regulér in some circle
of centre P,. This sircle will extend as far as the singularity,
of the function ed by the new series, which is nearest
to P, and jhis’may or may not be 8. In either case the
new cireld 6f convergence may lie partly outside the old
circle.and', for points in the region included in the new
cir%}a‘ut not in the old, the new series may be used to
gﬁn the values of f(z) although the old series failed to
\ 80.
) Bimilarly, we may take any other point P, in the region
) for which the values of the function are now known and
form the Taylor series with P, as origin which will, in
general, still further extend the region of definition of the
funetion ; and so on.
By means of this process of continuation, starting from
a representation of 2 function by any one power series,
we can find any number of other power series, which
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botwoen them define the value of the funetion at all peinta
of a domain, any point of whick can be reached from P
without passing through a singularity of the function.
Tt can be proved that continuation by two different paths
PQR, PQ'R gives the same final power series provided that
the function has mo singularity inside the closed curve
PQRQ'P. A

We may now, following Welerstrass, define an analy$ie’’
function of z as one power series togethor with allMthe
other power series which can be derived from it bylahalytic
continustion. Two different analytic expressions then
define the same function if they represerit power series
derivable from each other by continuation, The complete
analytic function defined in this W&y,nq\e& not be a one-
valued function. FEach of the continuations is called an
element of the analytic function\W

If f(2) is not an integral function there will be certain
exceptional points which dy et lie in any of the domains
into which f(z) has beerivegptinued. These pointa are
the singular{tigs of th%@é’ﬁg%é‘ AGich s Clearly the
singular points of ofeYvalued function are also gingularities
in 1his wider sense.

There mustibe at least one singularity of the analytio
function ong'the circle of convergenee C, of the power

o, 4 $
series 2 tz—z)"* For, if not, we could eonstruct, by

(N )
conpintiation, a function equal to f(z) within O, but regular
ima " Targer concentric circle I'y. The expansion of this
‘fanction in a Taylor series in powers of 2—z, would then

“\Sconverge everywhere within I, This is impossible, since

the series would be the original scries whose circle of
convergence is Cp. If 2, is any point within Cj, let Cy
be the circle of convergeneo of the power series

= (z—z)"

Z f"z,)

L]

nl

. % For a proof of this, and further details, wee Titchmarsh,
Theory of Funciions {Oxford, 1932), p. 145
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If Q, is the eirele of centre z; which touches £ internally,
the new power series is cortaindy eonvergent within €4
and has the surm ftz) there. There are now three
pussibilities, Since the radius of € eannol be lesa than
that of @,, we have cither {i) O} has a larger Tt than
@, or (il) Oy is & natural boundary * of fz), or {1} €7, may,
touch Cy internally, though €7 is not a natiral boundary )y
of fi2). o

In case (i} Oy lies partly outside € and the neR R wer
series provides an analytic continuation of f (::.}j.f wé ean
then take a point z, within €, and outside Cﬂ'{ahd repeat
the process. In case (ii) we cannot contitiin [ (z) vuiside
6, and the circle € touches g internally #6 matter what
point z, within ¢ is chosen. Tn eagulXiii) the point of
contact of Uy and €, is a singularitg ¢ the unalytic metion
obtained by continuation of th&,.’driginal power series.
For there is necessarily one Singularity on ¢ and this
cannct be within C. N

We may ‘MudbEndibige SCa88 above remarks by the
following examples. -

2

\N

1. The series ()

+ z 2! z*®
“1:; n w @ at
3 3
mpresenbnlff}lé function f(z) = 1/(a—z) only for points within
the (:.ngL:e.\j z| = |a|. Ifdjaisnot real, the scries

o

O\ L z—b (z— 2
LN a—b ' {a—b)? + {a—b)® T
7\

’"\3 ./ for differont valucs of b, Tepresonts f{z} at points outside the
\ cirele |z} = |a |.
- 2. That there aro functions to which the process of

continuation eannot be applicd may be seen by eonsidering
the funetion

g(z) = 142zt e .

* See Example 2 below.
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Lt is readily shown that any root of any of the equations

s 1,2t =122 =1,8%=1,..,

is & singutesity of gfz). and henee that on any arg, however
smeli, of the cirele |z| =1 there iz an unlimited number
of thern, The cirele |z ] = 11is in this case a netwral boundury
of giz). 'This illustrates case (i) above,

WA

A function f(z), whose only singularities in the firtite
part of the plane are poles, is called a meropdorphic
function. We now prove a very useful theorc (4,

If fiz) is meromorphic inside a closed eoktonr C, and
is not 2ero at any point on the conlour, tkek‘

Pp)

1 ’ ¢*¢
L (v Y . .0
2mi J o fiz) NS,
where N is the number of zerosnd P ihe number of poles
inside O. (A pole or zero of\order m must be counted m
times.) waindbraulibrary.org.in

Suppese that z = g I8 w zero of order m, then, in the
neighbourhood of thi{point

M) = z—a)mdia),
where ¢{z) is r'egEIar and not zero. Hence

N7 e om0

O A T T
2 f)  z—a dlg

Sindethe last term is regular at z = @, we sec that f'{z)/[f()

hds, & simple pole at z = @ with residue m. Similarly, if

%= b is a polo of order k, wo see thut S{z}if{z) has a simple
Jpole at z= b with residue —&. It follows, by § 33, I11,

that the left-hand side of (1) is equal to Zm—Zk = N—P.
If f(z) is regular in C, then P =0, and the integral
on the left of (1) is equal to N, Since

d 1)
5 sl =

N ¢
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we may write the result in another form,
e
2 dr = A log f(2),
Ic J@) e loe/t

where 4, denotes the variation of log f(z) round the

contour ¢. The value of the logarithm with which we

start is immaterial ; and, since ~e.Y
log i) = log |12} | Hismsf) (O

%

and log | f(z)] is one-valued, the formula may pq.%i‘f,ten
R W

1 NN
N = — dgarg f(z). N
2ar
AN
This result is known as the principle Qf dhe argument,

%. Rouché's Theorem

If fiz) and are.r ;ulm:;‘;ﬁjithin and on @ closed contour
C and | 9&51 i Lf?z")dll%g}% OB fz) and flz)-+g(2) have
the same number of zergs inside C.

Wo observe that neither f(z) nor f{z)-+g(2) has a zero
on O, and so, ]_K{N is the number of zeros of f(z) and N’
the number'qf}eros of fiz) +g(2),

7l N = Agarg f,

M/
200 Ao arg (+9) = Ao srg fdc o (1 + i,) :

A'l‘}e"ﬁheorem is proved if we show that

O° A arg (1 -+ Q) =0.
f

Since [g] < 1f|, the point w = 14-gjf is always an
interior point of the circle of centre w =1 and radius
unity : thus, if w = pei¢, ¢ always lies between —4m
and ¢ and so arg (1+4¢/f) = ¢ returns to its original vaiue
when z describes . Since ¢ cannot increase or decreasd
by a multiple of Zm, the theorem follows.
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The preceding theorems are useful for locating the
roots of equations. The method iz jllustrated by the
following example.

Exzample, Prove that one rool of the equation 2% +28+1 = \)
Lics in the first quadrant.

The cquation 2412841 = 0 plainly has no real roots,
Yor, if we put 2 =, adtat+l =0 has no real positi\{e{:\

roats,  If we put 2 = — usnd writo $lz) = at—2%+1 =8, -
we soi thab g >
$lz) = 2¥z—1)+1>0, f 215 Y

and Plwy = i (l—z)(x? rx+1)>0, if 0<x§{.z'

Heneo the given equation has no real negativeroets.

The given eguation has no purely imagindry roots either,
for, vn putting z — iy, we get yt—iy? A & 0 and it is plain
that the roal and imaginary parts nevef}anish together.

Consider 4 arg (28 +#7-+1) round{part of tho first quadrant
pounded by |z| = B where R ig\large. On the arc of the
sircle, z = Reif, and we have N

A ng (5 125 +1) = AGHETELPB)bEPEYOOELO(R)),

= 2x FO(R-).

On the axis of ¥ we .ha:\;e

7\ 3
ar;}@ﬁ'ﬁ—z"‘—[—l} == are tan (_-.y_)

\ yé4+1
The numer?aébr“of —g3jty* 1) only vanishes when y = 0 and
the denoiaihator does not vanish for any real y. Hence as
y rangey from oo fo 0 along the imaginary axis, the initial
and\final values of arg (z4+2z%+1) are zero. Henco the total
c.ba'}ige in arg (¢4-12%+1), where R is large, i3 2o. It followa
\.ft:}'}at one yoot of the given equation lies in the first quadrant.

\ ) v,§’42 The Maximum-Medulus Principle
We mnow cstablish an important theorem which may
be stated as follows,
If f(z} is regular within and on a closed contour O, then

|fiz}| atiains its mazimum wvalue on the boundary of C
and not at any wnierior poind.
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Lemma. If $(x) is continuous, p(x)<x and

| -
I:&jagﬁ-{x)dxfx, . R .
then d{z) = «.

Suppose that ¢{zg}<l«, then there iz an in*..er;'%‘}'y

(;—8, x;+8) in which ¢{x) six—e and N 7
b A\ et
J Playdr L2 (e} + (b —a—28)k = (b—ﬂ)fé%?&?,
& M'\'\,
AS

which contradicts (1).

" Theorem. If [f)| <M on C, tﬁéﬁ\\[’f(z}}{ﬂf at all
interior points of the domain D enflosed by O, unless f(2)
is a constant, in which case | f(2)] LN everyuwhere.

Suppose that at an interion point z, of D, | fiz)| has
a valuc at least equal to i value clsewhere. Let I be
a circle of LetRT Y bEARY By within D. Then by
§ 33, III, .

1 flz)dz

\'\{\ﬂ o ami rz—2g ’ @)

Write z—zy= reit, f(2)[f(z) = peit, so that p and ¢ are

funct.igzi:f‘.'bf} 8, then (2) may be written

{7
4
N

1 29T
N/ 1= — ;
NN e
’"\;~” Hences 1< i df.
\V 2w [y P

By hypothesis p<(1, and so, by the lemma, p = 1 for all
values of . On taking the real part of (3) we got

1 1 Fad
=5 Ju cos P 4B,
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and o, by the lemma, cosd = L Henee f{z) — flz,) on
I Since 72} is & constant at any point @ on f' it fo]lmw
by Tuylor’s theoremn that it is constant in a neighbourhood
of t, L."Hi. .-mr(—, Ly analytic continuation, f(z) is constant
nd on O

ponding theorem for harmenie functions.

Ji is harmonic in a region cannct have a
Oy

A Funeclion w

simum af en interior point of the reGIon.

{ 3
N P

\
EXAMPLES IV ,,,}.‘
-

\
‘/f The fanction f(z) is regular in | z—a [< R ;, Prave that,
if Ozpe B2, A\ N

AT w4

1 = —4p
Fly=—| Pl T4
wrly 1O INY;
thso P s the real pars of fa-Freif), '\.“
2. ¢lzd and $(z) are two regulde\farctions ; 2 = ¢ is a Z.rL
cnee repestod root of fz) == 0 .and $(a) == 0. Provo that
the residue of {2}/ f{z) at 7 = &\ 1s~

7 (6 $'(a) (@) w‘wﬂws% e
V/

3. The function f(z) i regular when |z |<R’. Frove

that, if | @ |< E< &’ ,{\
e P Ly %
— f{z)z
m)\ ool Byt R LOL
whore ¢ iy ﬂ:«e oirgle |z | = R, Decdues Poisson'’s formula e

that, if Oz” ?< R,
% _p2

2T
Doy . L
\*"ﬂre 1= g, J B30 oo (B—d) 17t

@- By using the integral representation of f"}{a), (§ 33, V),
\ *prowa that

R b,

nt

'”\,: a2 1 ekt
N ( ) -

= — — . il
2 on tgm-1 ?

where € is any closed eonktour sirrounding the origin,  Hence
prove that

w n & 2
xr ('T_J — i " o2 €08 Bdg_
n=y \H Zx g
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v J 5. Obtain the expansion

o =gt (52) < () + ek (49 )

and determine its range of validity.

N
6. If f(z) = Ez’f(é—}—ﬂ’z’) show that f{z} is finito and
=1
continuous for all real values of z but f(z) cannot be e'{p‘lzldbd\
in & Maclaurin serfes. Show that f{z) possosses Lam}ent

expansions valid in & suceession of rin g spaces, p ~.,‘
S

/ J 7. Prove that cosh (z—]——) [ A Z‘aﬂ (zﬂ—[—ﬁ)\\ Avhers

By == — _[ cos nfd cosh (2 cc\}?)dﬁ

/ J 8. Find the T'I)'IDI‘ and Laurent gones which represent
the function (22 —1){{z4-2){z4+3)} i in, (1) [z <2, (i) 2<]z (<3,
(i} | z | =3, .

9. Find the nature and loqaj:’ien of the singularities of the
fanetion 1Rk d—'l’]}ﬂllﬁhmwthgunf 0< | 2 < 2w, the function
can be expanded in the form

;1',;:'5' Fray4-a2? et ey
and find the va.tg‘es 6f ay and ay,

10. The only singularities of a single-valued funetion
flz) are pa{és “of ordera 1 and 2 at z = —1 and 2 == 2, with
residues (2, 'these poles I and 2 respectively. If f(8) = /4
_f(l) —*3}(2 determine the function and expand it in 2 Laurent
ae S\Va,hd in Lz <2,

“\11. Classify the points z =0, z =1 and the point aé
“ﬂlﬁmty, in. relation to the funetion

M\ -2 1
\ 4 f(Z) 1— Z’
and find the residues of f{z) at 2 = Oand atz = L.
12, Show that, if b is real, tho series

12b? tan z—iln 2 z—iby? s
dlog(1+¥%-+3are b+ 1+1.b %(1+1.b) +3 (I—Hb)
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is an analytie eoniinnation of the function defined by the
zeTins
—dz it
13, The power series 2+ J2¥+428 ... and
ir—(7—2) + Hz ~2)0 —H{z—2F 4.

have no corminon region of convergence: prove thad they' X
are nevertheloss analytic continnations of the same functiond

14. 3f a¢>>e, use Rouchd's theorcm to prove that ¢ = q._\"
has n roots inside the eircle [2] = L A\

15. The Fundamental Theorem of Algebra. By, “taking
Jizy = am, glz) = aem ezt 4 L g, use\Rouché 5
theorem to prove that the polynormial . v

F(E) = agm b b
has exaectly m zeros within the circle ]'z I\ }E for sufficicntly

large B. $)

Deduce from Licuville’s theorem that Fiz) has at leas$
One zero.

18. Prove that z*32° +7z-’—~o has exactly two zeros in
the first quadrant. R &brauhbral

17, If | f(z) |>m on fz‘f = a, flz) is regular }‘nr |2 |=
and | f{0) | <<m, prove that¥f(z) has at least one zero in (2| <:a
(See §42.) ’..,\

Deduce that eyery a]gehrmc equation has & root. (This
is another proofis o?‘the Fundamental Theorem of Algebra.)

18. If a dorain D of the z-plane is bounded by a simple
closed contoue(? and w = f{z) is regular in D and on 7, prove
that, if fx(a{.tﬁ.kes no value more than ones on €, then f{z)
takes pe (value more than once in D. (Use the theorem
of § &0
\Brove that the above result hclds for the function
—'z”+2z—1—3 if D is the domain iz i < 1 and € is the unit-

S\ gu'cle.
3

\



CHAPTER ¥V
THE CALCULUS OF RESIDUES A

\/ﬁS. The Residue Theorem X

We now turn our attention to the 1‘esiduet tl{éorem,
and to one of the first applications which @a%chy made
of this theorem—the evaluation of definitdvintcgrals. It
should be chserved that a definite integmtl whick can be
evaluated by Cauchy’s method of geSidues can also be
evaluated by other means, thoughﬁ@ahy not so casily.*®

We have already defined thd Tesidue of a function
f(z) at the pole z = a to be the coefficient of (z—)~t in
the Laurcnt expansion of ffe), which, if z =a is a pole
of order'nt, " tERLEYHP %?Rg‘m

E’w Az —c:c)“—i-—,?'::b b fz—a).
~ 1

Wo have algh, Temarked that, when z — @ is a pole of
order one, théaesidue b can be calculated as im{(z—a)f{z}}-

O >n )
The residie’ can also be defined as follows. If the point
z = a/ig tho only singularity of f(z) inside a closed contour
2\
1

Q‘&&‘(d if i ), f(z}dz has a value, that value is the residue

LoNOf f(z) at 2 = a.

The residue of f(z) af infinity may also bo defined.
If f(z) has an isolated singularity at infinity, or is regular

0
* For ."0 e~*t g3, sometimes atated to bo an integral which

eannot be evaluated by Canchy’s method, sco Courant, Differential
and Integral Calouwlus, 15, p. 561. In this case Cauchy’s method
iz the more difficult.
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there, and if (' is a large circle which encloses all the finite
singularities of f{z), then the residuc at 2 = o is defined to be

5 | e

taken round € in the negative sense (ncgative with respect’ Oy
to the origin), provided that this integral has a deiinfte"
valne, IF we apply the transformation z == Ij{ j:a the
integral, it becomes

| ar R
| = —) 72 Y
2mi g Z
O
tuken positively round a small circle .b@ﬁtre the origin.
It follows that if $ ’,\
lim{—f ( ) [ = lil}if:—xf{z}}
=0 N N o

has a definite value, t-MﬁVv‘éﬁ'i'ﬂ%llfsbIﬁié’ PEBdle of f(z) a
infinity.

Note that a funoh&q may be regular at z = <o but yet
have a residue thor{‘ ).

Tha functiop\{(z) = Az hag a residue A at z = 0 and a
residue — 4 a‘t ;r a, ﬂlthmwh flz) is regular at 2 = o0,
</ r ?Leow{m l. Cauchy’s Residue Theorem,

L J’fz’z} be continuous within and on o closed conloyr O
and{regular, save for a finite number of poles, within C.

Lhew
e

- \ ¥

f flaydez = 2m 272,
¢

where L77 is the sum of the residues of fiz) at its poles within €,

Let a,, a;, ..., a, be the » poles within €, Draw a
seb of cireles o, of radins § and centre a,, which do not
intersect and which all lie inside €. Then f{z} is eertainly
regular in the region between ¢ and these small circles y,.
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We can therefore deform € until it consists of the small
circles v, and a polygon P which joins together the small
circles as illustrated in fig. 13.

KoY
o X
A\
Fre. 13,8 ©
Then AV
J f{z)dz:! f(z)dz—]—Z’ 4 ‘ f( )dz—Z' flz)dz,
www.dbr v

aullbr ar” o‘r\ 111
for the integral round < gh polygon F vanishes beeause
flz) is regular within dnid on P,

Ifa, is a pole berder m, then

\(;)lu z)w (z

where é"(f‘) Lt regular within and on y,. Hence

Y 4

—y

& . m

Qv- b,
'\\.. f

& = 1 Ve (2—0'.,-}’
“On writing z = a,—}—Se‘f’ 8 varies from 0 to 2 as the point z

'“\; « makes a circuit of the circle vy, and so

\V

Zn
f 2z = Zb 31~sf0 e1—3)i8idf) = Zmib,.

=1

Hence J‘f ydz = Z.‘ f dz_27r1278
r=1

which proves the theorem,
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\/Tkeorem 2. If h.m{lz—a)f Y =b, and if C is the

are, 8, < urg (z—a) <92, of the circle | z—a | = r, then

lim | flz)dz = i6(6,—8,).

/o

04 6 $
Given ¢, we can find an 5le) such that, if [z—a PN
| & [<Ce, where (z—a}f(z) = b+3. o\
[ b 2 AR
Hence “. flz)dz — ib{0,—8,) <e(63;91j,
C '\\‘"

and so, on taking the limit as r— 0, \tJre theorem follows.
If z = a is a simple pole of ffalyb is tho residue of f(z)
a$ z = a, 80 that if the contourds)a’ ‘small circle surrounding
the pole, 8;—8, = 2= a,nd We-got
ot dj)r'auhbl ary.org.in
‘f(‘a) dz = 2mib.
o

L

o

Véé Integratl n round the Unit Circle

-

of mteg{a.];a of the type

™ cos f, sin Ndd
O J " bteass, sime)
_¢\“Where $(cosf, sind) is a rational function of sind and
\\ * cosf. If we write z = eif, then

cosﬂ:z(z—kl), si116‘=~1—_(z~—-), — = df;
2 z ¢

and so jiﬁ¢(cos 8, sin 6)d@ =J. H(2)dz,
¢
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where (2} is & rational function of z and C is the unit circle
{z]=1. Hence

f fiiz)dz = 2t ZFR0,
¢

where X702, denotes the sum of the residues of i{z) af its ‘»\5
poles inside C.

BErample. Prove that, if a>>b>0, \ \)
27 sin?gdd 2 e
_____ iy RPN AN
Jg atbeos§ g eVl 3 A 3
Now on making the above change of variable, 'lf\(} is the
unit clrcle|z1—- 1, <
2_ 2 ;o
_[ (z I it V.2 dz J' d N\ __a_J Fio)dz,
% cz*(z“{—?asz—rl) ~ % gz”(z—o,).(z\A;B) 2h ) g
where ’I;"
—at /(@) \ra— vt
g e — e
www_clbraf]library_gl'g’;iﬁ b

are the roots of the quad.ratfg{‘z’—i—Qasz—l—l = 0. Bince the
product of the roots a, §,8nity, we have | a [| 8| = I where
| B|>|al, end so z =a.Is the only simple pole inside C.
The origin is a polxd{‘mder two., We caleulate the residues

at {i) z = a, and {ii) 0.
142
{i) Rcm%e >— hm(z——o.)F(z) = hm (e 1) — (a___ .E.")_,
,,\’ 2oy (z_ B) c‘_JB )
, \\”' (a— )t 2.4/ (a? —b?)
A\ = =g—f = —.
\. ,: a—f [

~ L _ . (22 —1)
\ \“{ii) Rosidue is the coefficlent of 1z in Wm,
where z is small. Now
(z*—1)2 T2
222 +2azfh+1)  2*(1 + Baz/b+2%)

and coeflicient of 1z is plainly —2a/b.
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R _wf Za | 2y(at—bY)

which proves the result.

\,§ 45, Evaluation of a Type of Infinite Integral
Let @{z) be a function of z satisfying the conditions :
(1) ©{z) is meromorphio in the upper half-plane ; { \
{i1) §(z) has no poles on the real axis ;
(iii) z6(z)— 0 uniformly, as ] z |00, for 0<a.rgz<'rr,

[
b {iv) J. Qx)dz andf G(r)ydx ‘both conve{g{x, then
\ .
N f Qfr }dx_-QTraE‘?'Q* \
whete D72+ denotes the sum of thare\sldues of Q(z) at its
poles in the upper half-plane.

Choose as contour a aormcn-cle, centre tho origin and

radius £, in the uppcaxwﬁg}&g@bllpgb(ﬁ}?.ﬁemmrcle ba
degoted by I, and rhooscvR  Targe enough for the sericirele

to inelude all the poles of ¢(z). Then, by the residue
theorem, \

f \Q‘(x”dw f Qe)ilz == 2uri B,

From (iiij, 4F, R be large cnough, | 26(z) |<Ce for all points
oh I', and so

'.\':]‘g‘["ence, as R—oo, the integral round I’ tends to zero.
”\; « If (iv) is satisfied, it follows that

oy

7 om0 ] @
= J. Q(Reif)Reifidd : <E,[ df = me.
0 0

Qx)da = 2mri Z72+.
If Q(z) be a rational function of z, it will be the ratio
of two polynomials N(z)/D(z}, and condition (iv) is satisfied
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if the degree of D{z) exceed that of N(z) by at least lwo,
for, when w is large, Q{z) behaves like z-%, where p22 and

© ~
J. izf and j tjf both exist.*
X x? —w 2P

Note that condition (iv) is required as well as (iii}, for the QO
condition =Q{x)=0 in not in itself sufficient to secirs thar\ ¢
¢\

convergence of ImQ(x)dx. This can bo seen by taking -
Q(z) = (x log x)~L ("f}:

HBzample. Prove that, if ¢>>0, '»g\{’

J’w de T
o @*+tat T 24/2at’ ,:\\w‘

If zi4at =0, we have 22 = ae*-gﬁ{i%ld the simple poles
of the integrand are at ae™il, aed™i/4,igghmit, ae?™it, Of these,
only the first two are in the upperchalf-plane. The conditions
of the themgw‘ggggg}mglgfrg%ggggg, and 8o

J.w L 2 Z{Részidues at z = ae”ill, gedTiH4)

— 2V t+at 4 *

Let k& denote any: OQ:‘M;f those, then k* = —a* and the residue

at the simple Qohz = E is lim{(z—k){z* —k4)"1}. This may i
{ k

be eva.luated(bfﬁauchy’s formuls, as applied fo the evaluation
of limits p\f &xpressions of the indeterminate form T 040, and 50

oY 2k 11 k
- F ~ lim — =5 = — -
,'s’\ sk Pk sk 12 4k 4q
N o
7NN dx 1 . .
s\ Hence J = i — T4 mrif4
\\3 o Tt 2mi 3 (ae™ +ae i),
i . . i P T
T rmid Ty — —  9igin - == —— .
= S (€ .‘{: i4) 253 24 sin 1 WETE

s

* For the convergence of infinite integrals, see F.A. P- 193,
or G.L, p. 77-
+ P.A., p. 106,
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® dz -
Hence Jlo m = m.

The theorem can be extended to the case in which
D{z) = 0 has non.repeated real roots, so that Q(z) has
simple poles on the real axis. We now indent the contour, £
by making small semicircles in the upper half-plane fo
cut out the simple poles on the real axis. Suppose thaty
D(z) = 0 has only one root 2z = a, where @ is real. { “The
contour is then as shown in fig. 14. The small fger‘gic“ircla

Fm.j;ldf."

is denoted by y, itevepittbrislie poieg m=a and its
{(small) radius is p. IfAP is large enough to enclose all
the poles of @{z) ingbhe upper half-plane, then the integral
round I' tends tg 2ero as B—>o0, &8 before. We therefore
have, if the path of integration be as indicated by the
arrows in fig\l4,

™ [+ % ds = 2mi Z7OF
Q(I,.+ " +L+L+P9(z)z— i Z7er.

 Bow, F“" + IR Qx)de = P j " oz,
) vk Jate —

\ ‘\Z{/’L&)ﬁd it remains to consider J‘ , Q(z)dz. Now, on ¥
z = a-petd, and s0

Y E:d
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Since Qz) contains the factor (z—a@)! wo may write

Q(z) = ¢(z)/(z—a) and ¢{z) is rogular at and near z = 4.
Hence

1] 0
[ awa— [* dta+oeviao = [ cpiar-ronas

since d(a—-peif) is regular at and near a and ean be expanded ¢4, «

by Taylor’s theorem with remainder when n = 1. 1b
follows that g W

R
’ 4 "~(

J. Qz)dz— —mid(a) as p—> 0. ,'f:
¥ &

Sinco ¢(a) is plainly the residue of Q(z) =P2)/(z—a) at
2z = o, we can write the final result in thxe{(u‘m
o ¢
P J' Qs = 2mi SR i TR,

—

N,

where /2 denotes the sum of S$He residues of 0z} at its
simple polespndtirewiblagignin clearly each pole on tho
real axis can be treatcd inithe same way as z=«a. The
principal value of the iitegral is involved, becausc equal
spaces p arc taken oneither side of the real poles, and,
by definition,* &\

. f&3e (B 8
lim :fx S flodz =P | flx)de.
p’—\trﬁ ‘a atp @

Tt shefld be noticed that if & pole bo cut out by a small
aem'\m‘lé, the contribution to the value of the integral is
haif\what it would be if & small eircle surrounded the pole.

...(Séé § 43, Theorem 2.)

§ 46. Fvalunation of Infinite Integrals by Jordan’s
Lemma

We now prove a very useful theorem which is usually
knoewn as Jordan's lemma.

* Soe P.A., p. 195, or G.L., p. 8.

N
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If T be a semicircle, cenire the origin and radius R, and
Sz} be subject fo ihe conditions :
(i} f{z) i3 meromorphic in the upper half-plane,
(i) fiz)— O uniformly as | 2 |00 for Oarg z<{m,
{iif) m i positive ; then

4

j. emitfizdz— O a8 B—co. O
r :.\'\ %
By (i), if R is sufficienily large, we have, for alL pomts

on I, | flzj]<ce. Now ¢

| exp miz | = | exp{miR{cos §+1 sin )} = e&p"[)—mR sin 8).

Henee,

|| fepemisas

%

= ‘ J‘ﬂf(z)emizRe"ﬁadBin\g e—mRBsind RJQ,
0

N

W
D

in
= 2Re | o-mNn0a)
\gww dbraullbrary org.in
Now it can be provetf by considering the sign of its

derivative, or olherpdde, that sin{;f steadily deercascs
from 1 to 2/ as Qﬁlcreases from 0 to §w. Hence, if

O=8<1m, \\
O\ sln d 2
2O~ 8 7
Hence '\w
in
em1zdz QPEJ g—-2mR3..-'1rdﬁ,
o~ .3‘; e e
J = — (l—eg—mRE =
” m( ¢ )< m

from which the lemma follows.

By using this lemma, we can evaluate another type
of integral. The mothod may be set out as a theorem
an follows.
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Let Qz) = N(2)/D{z), where N(z) and D{z) are poly-
nomials, and D(z) = 0 has no real roots, then if

(i) the degree of D{(z) exceeds that of N(z) by at least one,

(i) m>0,

@
J. Q(x)em™rdr = 2milieh,
O
where 72+ denctes the sum of the residues of Q(z e"‘“‘ at”
its poles in the upper MIf plane.
If we write f{z) = Q(z)e™*, we see that f{z) satlsﬁes the

conditions of Jordan's lemma and 80 r M (z}dz-—t» 0 as B—>w,

On using the same contour as before, e large semicircle
in the upper half-plane, by makin g RY)NSO we get

o

Q(x)e’“”dx Nt 21712}‘9*.

—a

On taklﬁgwfézﬂbﬁﬁ‘&ihﬁg}hﬁﬁ“parts of this result we sse
that by this method ¥e “ean evaluate integrals of the type

J Q} 903 mz dz, f(:r ) sin mw d2.

By a We]l-kuown ‘test for convergence of infinite in-

x
tegrals;{if f(x)decreasesand — 0 a8 £—0, amceJ. n 5 ma de
7\

is"h\f;nded, the integrals in question converge.

\ Example. Prove that, if a>>0, m>0,
\ ) J"” cos ma dx

o @ita

The only pele of the mtegrand considered, em™*{at+2%1%

in the upper half-plane, is & double pole at z — ai. The

* The test is known ss Dirichlet’s test. See Titchmarsh,
Theory of Functions (Oxford, 1932), p. 21.

-13 {1 +am)e™.
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conditions of the theorem sare easily scen to be satisfiad
and so0

1 emiE B pmiE .
gy = 2ni{Residue of ——, , abt 7z = ai}.
—w (@t xt)? {es?-1-2%)

Pub 2 = ai+£ then, sines ¢ ig small,

4

mid —ne emii g—ma i 2: ,
& — & i = (I 4mit4...} (]_ — o +) AN

(a2 +25)% 3 2ai4-4)* — 42t 20 (N

. N
and the residue, which is the coefficient of 175, ia ecasily aten
to be . : s.s

_-{E—mrl{l L) . ,\\
48 N\

Hence

® o gminde me~™ {1 +mai\
J_w {2 bx%)? = 2&3’:;\\”
On equating real parts, and taking ‘oille half of the result
for the integral from 0 to w, we get \.)

Jm cos mr dx _ 3’:(1 Fam)e-an
0 (agw&dbzﬁiﬂjbraryorg.iﬁ

If there are simple poIe’swof the integrand on the real
axig, wo get a modiﬁ(%tion of this result, similar to that

obtained for the théorem of § 45. Thus, if D(z) = 0 has
non-repeated regl ¥agts, wo got

o
fj. } “ Qlrlemitdy = 2miX AP 4 miZ S0
—o

the pr?efz%ilowiug the same lincs as before.
gxample of this extension of the thoorom is the proof

thaby,
PN J“” sinme :
»\;w,‘ o @ = i, if m>0,

\s . . .
On considering the integrand €™z wo see that it has

a simple pole at z = 0 and nono in the u
i : pper half-plane,
The residue at z = 0 is casily seen to bo unii;yl,J =

PJ‘ ¢ dxzﬂ-i.
—-_ @&

and 30 we get




126 FUNCTIONS OF A COMPLEX VARIABLE

On equating real and imaginary parts we get

o0 o
P J’ E!!'}Fi TRY dy — 0,
—

»

@ gin e
der = 7}

—= 2 ;"\

- . . - N ¢
the *P” is not necessary in the sceond Integrnl, sincef N
gin mief r—= a5 T U, whereas the integrand in the st inte ra\
becornes infinite at the origin.  From the second resulé Woggﬂ

~i

D gin My AN 3
j de = . 'S
o 4 \,"\\
§ 47. Integrals invelving Many—VaIglé,ﬂ.\“f‘unciions
o
A type of integral of the form¢ ‘g‘x“—lQ(x)d:?:, where g

is not an integer, can also «Bg* evaluated by contour
integration vt btaieh brestyiet@ imany-valued fanciion, it
beeornes necessary to usesilie cut plane. One method of
dealing with integrals,6f\this type is to use as contour a
large cirelo T, cent:e}t ¢ origin, and radius #£; but we
must cut the pliste Wong tho real axis from 0 to co and
also enclose the branch-point z = 0 in a small circle y of
Tadins p. r_u\l‘(} wonlowr is illustrated in fig. 15.

X:\:";

N

&

X
...\Q‘
a \Y%

O
N

Fra. 18,
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Let Q{x) be a rational funetion of 2 with no poles on
the real axis, 1f we write f(z) = 2543{z) and suppose
that zf(z}- ¢ uniformly both as |2 | — 0 and as |z { =00,
then we get the integrel round I fending to zero as
B0 and the integral round v tending to zero as p— 0
for, on I7,if 1 is barge enough, | 2f(z) | <e and so | f(z) | <¢/R,

.-\

f I A o
!. fflz iz | < 5 Her = e, \'\\}
\ \/
Bimilarly on 4, !zfla}{<te if p is small enough, a,nd 50
| flz) <<efp and pile
r | e S
J f\u}u?"" < - 2mp = 2me.
¥ P \
.\\,,

- . Ry
Hence on makinig p- » ¢ and B—0 wege

- 1] AN
Jr Q0 de E—J‘ :x;“‘legﬁ"(f‘—'n@f el = 2miX72,
i}

oz Ao "

L

where 250 is sum of I‘t(%'\’ﬁi’g@r@fdf LY AEE e contour.
We observe that the vcumb%r)f z8—t at points on the upper
and lower Pd‘go& Lu" the wt are 1ot the same, for, if 2 = reif,

we have 27! fade -1 and the values of 2 at points
on the uppor edg?\corro\pond tolz=7r 0=0,and at
points on theMower edge they (orrmpond to [z]=r,
0= 2q. :“’}"'

Since @9:333“” "D = e2ria wo gob

¢ ®
O e < 22
a\\ v o Lt

§\We also observe that, when ealcul tating the residucs at

"\“‘tho poles, 2°—1 must be given its correct value #5—1gifile—1)
V' at euch pole,

Example, Prove that

J'*:c"-'dx * .
o 1w —Si—rE,Jf0<a~<l.
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Tere we observo that, when flzy = 2= 1+z) Y zfiz}> 0 a8
12| >0, if a<1, and zf (2)-> 0 aslz | >0, if @0, Hence, if
0<a< 1, the integral round I' tends to zero as RB>w and
the integral Tound y tends to zore as >0

Thus
ol mﬂ—l 2 -
- dz = mﬂ%ﬂ {Residus of 2871 dzytatz= -1}
Atz = —lwehaver=18=m, and so, for the residue;\'\.
1’ za—l ”,".‘
s_;ﬂil { (142)— [ = (—1)p1 = pla=DT8 — AT
z+1 REs.
-
Hence N
o -1 . earri \ 1
8 1+xd€0 = -21ﬂ,{ ;_eﬁ} = :-:2%1"?017%'_80771'
"~
— 11- 7 N \ 53
T sin ag NS
o

This integral can alsovhe evaluated by integrating
z“‘l/{lﬂz)\:"ﬁé‘frfléjﬁﬁuébiiﬁdﬁ?%ﬂéﬁge semicircic in the upper
half plane and the real axis indented by scmicircles b
2—=0 and at z=<N In this case the out planc i8
unnecessary. ’%ie} evaluation of the integral by this
second met-hgd\i loft as an exercise for the reader.® By

this second. Jubthod one obtains the further result that
A/

O ® g5l
I P == g7 cot am.
:"\1. o 1—-x

S

¥Y§ 48, Use of Contour Integration for deducing

NS Integrals from Known Integrals

h
3

The contours used so far have been either circles of
gemicircles, and although a large gernicircle in the upper
half plane is generally used for integrals of the type
discussed in § 45, there is no speeial merit in a gemicircle.
The rectangle with verticos +R, -LR+iB could alsa be

* Soe Copson, Functions of a Complex Variable, p. 140.

AN

N
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used in theso casecs. Weo now give two
deducing the values of some uacful hﬂcgml by fntesrad o
g given function round a prc«,rmco. gontonr, We e,
in the first case, o rectaugle and in the sceunid a quuslrant

of a circle.

“w Brample 1. Prove that ,f e—9 pos Qurde 2 3 meT e by {
. '| " .
» . —y T - N 0~
integrating e~ % rownd the reclungle whose verlices ure ), 2 AN
R-Lia, ig. ~\
) « \J
‘f . “
PN
N
e 8 '...\ }
Yat & 4
W
.\'\,\
/
Q A * '\
AY;
Frie. 16. 2%
AL

Let 4 be (B, 0) and @ be (D, @) I\Bh6 Argand dingram.
On 04, z=x; on AB, z—R——JJw on I} 2 = -} i
and on OC, z =iy, Now e % hua rw» poles within or on this

contour and so, by Cauo@y\ﬁqtawmbr -ary.org.in

™
,s

g’ 0
a2 Qi - { — (R iy g 0 —1 e
JD }J e ”ifJ,J‘RB Hm]d“Ja Fidy =s 0.
\

Henece

\
J & dsn \4 —x*(cos 2z —1 sin 2artde 4

\ a "
) G4 g— Mg —2illy+ig,, W L
.«.\f@ ﬂ ef o
\ | . " - T
\\ %406 3_2}23’*"'0194 e

’&ria 80 thia integral i
\ . o -:0 azs B> c0. On using the resuly that

»/ J e—x!d:(; — %,v".r,
5}

we find, on making B > o _?nd equating real parts in (1)

. 1

o

jo e7% 008 2uk di = L4/qet",
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\/champla 2. By infegrating ez2°~ round o guudrant of
a cirele of rodius R, prove that, if 0<a<1,

G403 ared

_[ @ medx_l( ) sin 5"

The contour roquired is deawn in fig 17, N\
" t\ s
¢\
~A
« \J
< RE
N
2
O
247
N/
: N\
< R RS

N\
Fre. 17. ,'\\"
' 4 (‘

Bince the origin is a branch-ppiﬁt}for the fimetion 2%,
we encloze it in a quadrant of & sall circla y of radivs p.
We integrate round the con‘o@urqn the sense indicated by

the arrows’ " ORrgulike ﬂﬁ'éiﬂoﬂﬁdnm get

f e dz .L N — psing ot mif 49:fzai
Y

.'\\é\p f dg
A\ .

- N
since | e_PfE{‘fI <; 1 when p is small. Tt follows that
N\ \)
'\w J. e z% gz D us p> 0, if a0,
A’ Y
'Qf a< 1, | 2} < ¢ when & is large enough, and so by the

wgMme argument as was uscd in proving Jordan’s lemma
'\ f§ %8) wo have

:.%ﬂp N

\,’ f etz dz> 0 as BR300, if a<< 1.
o
Tence, if D<Ca<1, woe get, ou making p-> 0 and >0,

] 1]
J- g‘fxﬂ—ldx_f_‘l' g*lfya-—lelu—l}iﬂj'.'édy =0,
0 L]
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sinee there are no poles inside the contour. Honce

PE L. L i .,

I zeHeos w4isin x)de = —[ evyi! (cos — +4isin —) diy.

Jo 0 2 2
& el

R j e vytdy = I'(a),* on equating real and imaginary
0

parta, the required results follow. A

RS .Y
1§ 49. Expansion of a Meromorphic Tunction \ O

Let f(z) bo a function whose only :amgu_lo.rltlcs, efnepb
at infinity, are simple poles at the points z ——le, 2 = ag
2 = dy, ... ; and suppose that .

O<fa, |<|as|<]as [<

Suppose alio that we know the 1031(%03 at these poles:
let them be &y, by, b5 <0t Comldu: % sequence of closed
gontours, either circles or SQ_LEI&I“L,S C;, Cs O3 .ivy BUCH
that {, encloses &y, ‘hut no other oles The
contours (J, must llJe sutibaéﬁ'édfﬂr%ﬁ-‘é %ﬁ:ﬁﬁmpm distance
E,of O, from tho origin“tends to infinity with =, (ii} the
les qgth L, of the contiur C, is O(R,), (ili) on C, we must
have f(z} = o{R,),{ Condition (iii) would be satlsﬁed if
flz2) were bounde\k\en the whole system of contours O,

When thefe\eonditions are satisfied wo can prove that
for all Lalug& %of z except the poles themselves,

\\\ f(z)=f(0)+23b..( - +i).
NS

=l 20y, Ay

A

'I‘o prove this, consider the integral

1 fite
7= ’Tl.[c Uiz} i,

where z is a point within C,. The intogrand has poles
at the points a, with residuos bof{mltm #)}; 86 =2

* G.L, p. 84,
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with residuc f(z)jz; and at { =0 with residiue —f(fz.
In particular casos the last two residuss may be zero.
Hence

r b
o be O JB)
m=1 a‘m(a-m__z) Z Z ’»\!

If now we can prove that J— 0 as n—co, the theorem {8 \\\,
proved. Here we require the conditions Inid down abqvg ™
on the contours C,. On making usc of these, we set that
I N
I\ < o= s max | f(0)] — O as 4.
1< gy e o

The gories is uniformly convergent in amy» finite region
which does not contain any of the pole:&x &

X }

As an example of this theorem we(prove thad
1 BN

cosoe z— ~= = 28\ ————.

www.dbraulibrafy owgHi 7 -z

N1 1
Consider the funetion fiz)'= coseo z— — (z7#0), f(0) = 0. Row
4

sin z has eimple zeros a"ﬁ;ho points z=nm(n=...—2,—1,1, 2,..}

: 7 —slrig .

and so f(z) = ?5’&1%_ will havo simple poles at these points.
z

The rcsiduc’a{ﬁ’ 2= nn becomes, on writing z—nes = .

lim {SFnpsib (GHnm)} _ Lim {pnm— sin (Cnm)HH1— coa ({4anl}

=0 (Qm:ﬁ.ain ({¥nm) 0 T (§+nw) cos (nw)+sin {{4nr)

¥
' - "M _ (=D
ad ny CO3 T

¢

AN
#\.There is no singularity at z = 0 since
4

z— Hinz _ O{| z 53}
zsinz  240{z 14

= O{]z1}.

Let O, be the squaro with corners at the points (n4+-H(E£1+0m
The function 1z is certainly bounded on these squares. To
prove that cosecz is slso bounded, consider sepsrately the
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regions (a) y>km (b) y< —im (€) —fr<y=<ir. In (a) wo
have y>>%r and

2 | = 2
| coseez | = e | pre e
for |er—e™H| = I{ie"l— lemf [} = [{]e
and & similar argumoent applies to (b), writing ¥ = —t80 that

t>3w.  For (o), let AB bo the line joining tho points 7 -+ %;ra \

Sineo |sinz | = (coshiy—cosiw)t ; on 4B wa have, gince xgﬁwbr,

4

|sinz | = coshyzz1, so that |cosecs [ 1. “s"’g

Since cosecz has poriod w, it 18 bounded om ~a‘1l the lines

joining (n+i—3i}r and (43 +3ijm Humee cosccz is
bounded on all the squares . The \Q’evzous theorem
therafore gives \
1 ® 1’,\ 1
coseg 20— - = X' [— (.—-—r'—+ _..),
z n=—m R nr

the accent indicating that thel terln n = 0 ia omitted from
the summsation, SmceWtrhW@&ﬁ@@llxbiﬁfmm& nd with n<0
convergo separately, we ma,y add together the terms corre-
sponding to -+n and wz;lto the expansion

" (_ )ﬂ-l

Q@”— PR e

‘/§ 50 Sum‘sﬁauon of Series by the Calculus of
'Reszduas

e method of contour mtegra,tlon can be used with
advantage for summing scrics of the type 2 f(n), if f(z)
_sbe a meromorphic function of a fairly simple kind.

\: » TLet € be a closed contour including the pointa m,
/ m-_ﬁ—l, ...y 1, and auppose that f{z} has simple poles at the
points a,, @,, ..., 4y, with residues &,, by, ..., b,. Consider

the integral

J‘ 7 oot 72 f(z) dz
g
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The function # cot 7z has simple poles inside € at the
points z =m, m+1, ..., », with residue unity at each
pole. The residues at these poles of = cot wz fiz) are
accordingly f(m), fim+-1), ..., f{n). Hence, by the residue
theorem, 7N

jc fz} 7 cot mz dz = 2mi{fim) +-flm-+1) .. 4-f(n) O\
by COb may ... Lhyr cot RQR).
If conditions sre satisfied which ensuve thaty the
contour integral tends to zero as n—>co, we cafy find the
sum of the series X f(r). Supposo that f (z).i’s:\a, rational
function, none of whose zeros or poles are infagers, such that
2f(z2}> 0 as | z|>w. Lot € be the sguafe with corners
(n+3)(+14i). We have secn thatl &6t 7z is bounded

tz 7 Le

on this square and so f Zf(z)rr'ljb:t{g;'z - < TI " for
o X

R

large enough, where M is the*upper bound of | cobaz|
on C, L ¥ lﬁﬁ%%‘gﬂbhf@&ﬂﬁﬁlms the least distance of the
origin from the contour, “Since L = 8&, the integral tends
{0 zero as n—-o0, ar}iKSO

n P t
lim X "= —aib, cob g, ... Fhyeot wa.
A m-t—'nf@; { 1 1"|" ‘l‘ X k}
If we usg gpbosec s instead of s cobmz, we can cbtain
similarly \th?: ‘sums of series of the type Z(—~1)"(m).

N4 ® @ (—1)
e %{@fnplﬂ- Find the sums of the series X ! (=D

et nz_,}_az’”:(’ nz+az’
N 1
NN r the s F(z2) Aia
”\: “twa poles of f(z} aro at z = 4a¢ and the rosidues at these
\ poles are 4-1/2ai. Honce

and so zf(z)-> 0 as |z [-o. The

E : = : 6 mat 1 ; 7 coth na.
= —x MEa% "\ 20 COb nat — Sai cot {—rmai) [ = s 3
1, =
or = 2 — = — coth 7a.
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Similarly we get, by using = cosee a% instead of & cot n3,
z (=" i
z =07 2 4 7 cosech ma.
?'n"’-—}-cb“ 20 + 2a
In swlpk- cnses wo can deal similarly with functiona
fizy which have polos W ‘hich are not simple. Asan example,

oo*lsulﬂr the scries e
o 1 & .\.\.
2 NN T
—m (EI +n)2 \ Y
l’n'
Here flz) = {a1=z)* has a double pole at z = * By

Taylor’s theorem N ~.\\'
&)

cor wz = cot{ —na) H{rz+mal{— —cosce{>qa)} .-

and so ths Tesidue of cot mz{(z +a)? at z = {2g"1s —n cosec*za.
\ = 1 \\
Hunce z - m= ot co::eu“;ra.

“um (B +np L N

*3
Al e

\
EXAMEBLES V

Use the method of wdhtalibtpsgrasigante prove the
following results 1 to ]E\'—-

'-/ J‘TT a of '{s/ 7 o
1. a_+m\v Ji+ah)’ (a0}
2T 7 t:tf-,236 g4 I—P-i-pz
2 'f __l—pip?
(I—2p cos 23+p TTiop ] {D<p<i}h
FHMM 7 s " it
LN\ 32 cnsf _\/5( — 4/B}", {n & positive
":ifzh:gor}
NS
N4 r dx a2 oo
(;c% |- BE){x? 4-c?)3 2bca(b+b}g (b0, e>0).

..""..sd(ﬂ 3'\/211
5. j =
o @ita?  16a (a>0).

cos @ db T gt P
LI (e 600
8 J e Pt (3 e
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® cos ar dr a 7 . .
[, Trmges = T3t (2 glep (—tov ) 220

J"f ain®ne dr o

e _etma ] 3 %may, (>0, a0
o xHa? -at) WAl + o )

=1l 2 2
9. f T T ( ?Ta+ﬂ) cosee wa, (D<a<C2).

T =" o8
o Lt@-gat 473 N\
- #} - rxd . T ] - ;“\.\
| J. oy s _ ( 7y {-—-—1{{1/ 3). « N7
o (14232 4cos kma’ AN
A\ 3
1%. ]*_‘valua.teJ- , taken round the ellipse wl\%“equutlon

\reo dz
is x—ayt+uitety =90, Evaluate mmjling T round
the ellipse 2w2 4% == 4. '\(.

12. Show that the funcéion fiz} ~=~za(a—e—") hes simple
poles at the points z —zlocra—f:Qm (n=0, =1, =2, ...];
and by integratinrr flz) rounds@®rectangle with ecruers a%

+m tw-iin prove that, if a\?’}
www . dbr auhbl AR 0’1 g.in
T w s 1+

— - lug ——
1+u3 ‘)a cos @
\

13. By takin msJeontour a sguare whose corners are
4N, N+2N@ ere IV i3 an integer, and making N-—>@,
prove that “{"~

Y J““ dix, loc 2
O -~ 7 —loga.
'\w n {1 +22) cosh ({nx) 2

1} ~]3y integrating e*z*1 round a scetor, of radins R,
bourded by the lines arg z = 0, arg z = a<C }» (indented at 0},
,B‘mve that, if >0, n> 0,

™
j an—lg—kxcoy a (k.b sin o)dx == “F(n} sm
0
® atdz w3
15. Prove that P -[o i Byt

r—sin e

z¥{a? J %)

16. Prove thatf S de= (a1 —e), (@0)

N
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5, 13 By integrating e j{g-ti#—1) round & suitable contour,

p1 ove that

® gin ay dy 1
il A h .,
f ) 3= coth $na 5

18. Prove that see z = 4o I(—1)"(2n+1)/{{2n 4 1)2x* — 427}

0
-19. Prove that, if —a<a<m & t\:.\’
- . ; A
sinaz 2 w(_-l)nnsmm; O
sinwz 7 a=1 —n3 T |
5as 2z cO8 N 7 20
c*ID':'a_ - + - Z { 1}" 1 "\'\\o
pginme w& 7 p=1 AS
20. Prove that N
@ ; H 7 sinh (x(a 2} +sin (ma+/2)
1 =
o At afy/2 cqsh(}m}\/z —ccs(wav'2)
(3 ’1)"’ ¢
end find 2? =
n:-v—mﬁ"q“ -i

(i) Prove tha%wut_éb‘rauhbl ary.org.in

® 1 1 T
z _“;ﬁ =55 1o (coth e -+cot ma).

\ # 8in az .
round & suitable contour,

prove thab \
Y L 1. 11 -
"}‘ postE Tt T
.’,:’0 2.
o) iy
”\)w |z| =2, has the value 4i/3.

+1 .
(i} Prove that J z? log z__{—l dz, taken round the eircle
a—

N
. log x dx n .
{ii} Prove that o s x2)5 =—7 wging a8 contour &

large semicircle in the upper half-plane indented at the

Dl'lgll]o



_ MISCELLANEOUS EXAMPLES
\-/fIf w==mwu-+tir is & regular function of z, show that

ot i0?
( + »—) w = 0 is equivalent to

&t oy <
&% o ."\\
s A\
Heonee show thab A\ )
WU e\
u{ é(z"r z) Qa{z —Z}J = ¢{z) + q’x(f: )
NS VR O
w{a(z —ZY, é;{z —z)} = ¢(z<—2z}>(z) -+,

where ¢ is an arbitrary constant.* QO
Tse the above relations to find the regular function f {2}

e S e Y 9 40 and il
for which yis (log u(ﬁb}—d%g/’. &} @ y® 45y and for wilieb 213

€27 {y coRgy & sin 231,
\//2.. If x—r cos f, "g"g:r sin # change the indepanlent
&2 s

varinbles in (E_ﬂc\\}}) $=10,tor, 0

T = (¥ iyt —y?) find the Fanction ) which
satisfics vf‘fi:a:"'ﬂ. Tind also the regular funcbion f{z) of
which ¢} is the rcal part.

3..8kdw that, if y +0, there are two points unultared by

bhg{éﬁ.ﬁsformation
R ey
..\’::, . ya+8

\\: " unless (8 —e)* 4By =0, in which case there iz only ong aueh
point. Show that, if z = 1 is this point,
1 1 n
wol z—1 "
where « i3 & constant.

¢ 7This result was communicated to me by Prof. A. Oppenheim.
138
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Show that 2=1 is the only fixed point of the trans-
formation
z—1->iz tan A
wp—
z2—1+4¢ ta,n A’
{}<ZA <%=}, and that this transformation maps the inside of
jz1=1on the insido of [w | ==1.

Skelch the curve in the w-plane which corresponds to the \
straizht line jnining 2z =1 and z ={.

4, U'rove that, if k>0, w == tan (#2/4k) maps iines pam.hal
to the axes in the z-plane on systoms of coaxal cirelgs in the
w-plane. >

Find what corresponds to the infinite strlp..j\c-— :Hc and
indicate in a figire the region of the iw-plane cor‘rebp@ndmg to
the square O<lz=k, b<Sy=_2k.

8. Bhow that, if >0, the relation? w\-_m cot {2 maps
the semi-infinite strip 0w < 2, y“;f) orM half-plane cut from
W=t L. 4 = 2. P v/

Two eircles, with real htmtmw pomts {4+, 0), are drawn
in the cut w-plane with centres. (ZL@, O), {ka, §), where 1.
Show that the space \b%tw'?&&ﬁhﬁﬁ;ﬁ E mapped on the
inrterior of & rectangle in tlie%-plane Wh()ce el is

Wy (2I"c— )(E4-1)
imﬁ’ S Sk —1)

6. E‘{press thg\tra,naformatlon

) 4(z3 1)
.\’.s" eS|
—a z—a@) e . .
in the«form — = k(—b) and henee show that the inside
e
oﬁ‘]\z =11is m.lpped on tho whole w-plane cut along a segment

_wf the real axis.
N Tustrate by a diagram what corresponds in the w-plane

"\ to that part of the circlo | 2—¢ | = /2 which lios in the fourth

\ guadrant,
7. If @, b, ¢, d are real constants, some of which may ba

zero, and
_ azt+bz+te

z+d '



*\*10. Show that, if (z+])s
N/ w = —_— N

N

QO
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show that thero are {wo values of w, each of which corresponds
to a pair of equal valuey of z; and that theso values of w
can only be equal if the transformation is bilinear.
Discuss the transformation
2! —2z

W=
1—2z

mn this way, end find tho houndaries in the z-plana Whicho\:\'

correspond to| w | = 1. N
Show in a diagram the regions of tho z-plane eorrespm:.giiﬁﬁ’
to |==1. ) .( 3
8. If f (2) is regular within and on the eirelo | z =2 and
if | f (2} | <<M on the circle, provo that, if |2 | =9€E,
Alr

| f{2) |>]ag1— T x.‘\\.,‘

where @, is the constant term in f (2) = :5: w2t
La=u
If B=1, ay=1 and | f{z) |~,<"k"..on | z| =1, prove that
f (z) does not vanish within the, einclo | 2 | = 1j/(14-%).
9. Showtnwid brautibraryang.in
“4az cot a
fe s
o0\ 1 +2zcota—2

then w ==f (2} giv &8 conformal transformation when z Ties
in any finite region excluding the points z = 44, z = oot fa,
3 == —ban ay

Show that the boundary of the gomicirele |z | =1, Rz>1
correspordls to an arc of a circle in the w-plane subtending
en angle ¥ at the centre.

Fiud the two points in the z-plane corresponding to the
gentro of this circle.

2z

two finite points of the z-plane are mapped on every finite
point of the w-plane, except the origin and w=1, and
explain why the mepping ceases to be conformal at the
point z = — L.

8how, in a diagram, the two domains of the z-plane which
are mapped on the semi-cireular domain |w [<1, Iw>0.

N
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o fral
\ f,.r-'l'} LIfFizy = %‘a,iz“ and ¢{z) == I b,z" are both regular within

0
2 domain D which includes the circle [z |==1, prove that

fial 1 Bar ) i
Tagby = o | f{eple=)do.
0 21? C]

Honce, or otharwise, prove that AN
i 1 1 1 o -\
W — (9,—|}2 +(4—!)—2 — -:Ev'-ﬂcosmsm?)&g?}
7%

AT, A funclion ¢z} is regular over the whelt&} z§p15-1:1a,
éxcopt at =0 and at z=~ 0, and, for all' vialnaa of =z,
$lz) == zdb{ fz), whore | g{<1. Find the Dafrdnt expansion
of $(z), given that the constant term in thoexpansion is unity.

Hhow that §{—8) = 0. 7,

13, ARCD is a square whose vertidasare 0,4, —1 +i, —1;
Iy is the line BC and I'; consists of\tha other throe sides of the
sguare. Iff (2) ==2*+2*-1 provothat (i) f (z) does not assums
any real non-negative valuo on'\F (i) B (2) >0 at all points of
T, excopt B. ..}“; ’

Henea, or otherwisewidﬁr}aﬂibl‘ary.01‘g.in

“Bt{z_) Je) dz
,g‘.[\f Ehal N e
WP Iy

and deduce™that f(z} has just one zero ingide the sguare
ABCD._ ()

14, :By\ Antograting e*fcosh? z along the lines Ife) =0,
X{z) "=\¥='>r"prove that

O -

"/
'\\ J' eos pi P

o cosh? 2 ginh Jap

15. By integrating
cosen ¥

=izt +1)
round & square whose vertices are (r—+ 3z} L= L.{z) prove that

cosec ¢ 2ef _ 5’ (:{}" )
Frl (@1t a-—w(l Al (t—n)
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16. By discussing

el s
J- : { —a <Zrirh
03 Wi 2—
round the cirele |z = whera 7 i3 an integer, show that A
cosal _2 5= -4 e Lia N
cos wl @ r—l (r—ip o ’ '0;
&
17, By integrating 2% 806 Loz soch ot rol the s
Rz == 12N, Iz= :L2N, where N i3 & pusitivae in® (_\‘eu»& ‘and

making N-—»o prove that
3 5 * X
sech l;: sech —2? . soch - \\_\\Q_b_
s 38 5 {72) AT
18. By considering (\;{:)

t, ™o
J' coth 7z e?t =
www.dbra uhbrary @rggi
talen round the sguare wiﬁ HIN+-E), ¥ = 4 (N +3}) where

N is & large positive &gor, prove that

/o

coth i Ta?

x\ ST s0
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